
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 1, Issue 1, April 2012
All Rights Reserved © 2012 IJRDASE

Implementation of CORDIC based Processor using
VHDL

Raghawendra Sharma
robie2007@gmail.com

Abstract-Digital signal processing (DSP) algorithms exhibit an
increasing need for the efficient implementation of complex
arithmetic operations. The computation of trigonometric
functions, coordinate transformations or rotations of complex
valued phasors is almost naturally involved with modern DSP
algorithms. In this thesis one of the most computationally high
algorithm called the Discrete Cosine Transform is implemented
with the help CORDIC(Co ordinate Rotation Digital computer)
algorithm which results in a multiplier less architectures and
comparison is made between the DCT using Chen’s algorithm
and DCT using CORDIC as well as new CORDIC algorithm.
One such simple and hardware efficient algorithm is CORDIC,
proposed by (Volder, 1959) [1]. CORDIC uses only shift-and-
add arithmetic with look-up-table to implement different
functions. By making slight adjustments to the initial
conditions and the LUT values, it can be used to efficiently
implement Trigonometric, Hyperbolic, Exponential functions,
Coordinate Transformation etc. using the same hardware.
Since it uses only shift-add arithmetic, VLSI implementation of
such an algorithm is easily achievable and also hardware
requirement is less. All these lead to efficient area utilization.

Key Word- CORDIC, Pipelined Architecture, Modelsim, VHDL,
Xilinx.

1. Introduction:
The digital signal processing landscape has long been
dominated by the microprocessors with enhancements such
as single cycle multiply-accumulate instructions and special
addressing modes. While these processors are low cost and
offer extreme flexibility, they are often not fast enough for
truly demanding DSP tasks. The advent of reconfigurable
logic computers permits the higher speeds of dedicated
hardware solutions at costs that are competitive with the
traditional software approaches. Unfortunately algorithms
optimized for these microprocessors based systems do not
map well into hardware (such as FPGA’s). While hardware
efficient solutions often exist, the dominance of the software
systems has kept these solutions out of the spotlight. Among
these hardware-efficient algorithms is a class of iterative
solutions for trigonometric and other transcendental
functions that use only shifts and adds to perform. The
trigonometric functions are based on vector rotations, while
other functions such as square root are implemented using
an incremental expression of the desired function. The
trigonometric algorithm is called CORDIC an acronym for
Coordinate Rotation DIgital Computer. The incremental
functions are performed with a very simple extension to the
hardware architecture and while not CORDIC in the strict
sense, are often included because of the close similarity. The
CORDIC algorithms generally produce one additional bit of
accuracy for each iteration [4].
For a long time the field of Digital Signal Processing has
been dominated by Microprocessors. However, there were
drawbacks in their processing capabilities, because they
were unable to provide designers the advantage of single

cycle multiply-accumulate instruction as well as special
addressing modes. Although these processors are cheap and
flexible, they are relatively slow when it comes to
performing certain demanding signal processing tasks e.g.
Image Compression, Digital Communication and video
Processing. The rapid advancements have been made in the
field of VLSI and IC design. As a result special purpose
processors with custo-architectures have come up. Higher
speeds can be achieved by these customized hardware-
efficient algorithms exist which map well onto these chips
and can be used to enhance speed and flexibility while
performing the desired signal processing tasks [5].

2. CORDIC
CORDIC or Coordinate Rotation Digital Computer is a
simple and hardware-efficient algorithm for the
implementation of various elementary, especially
trigonometric, functions. Instead of using Calculus based
methods such as polynomial or rational functional
approximation, it uses simple shift, add, subtract and table
look up operations to achieve this objective. The CORDIC
algorithm was first proposed J. E. Volder in 1959 [1]. It is
usually implemented in either Rotation or Vectoring mode.
In either mode, the algorithm is rotation of an angle vector
by a definite angle but in variable direction. This fixed
rotation in variable direction is implemented through an
iterative sequence of addition/subtraction followed by bit
shift operation. The final result is obtained by appropriately
scaling the result obtained after successive iterations. Owing
to its simplicity the CORDIC algorithm can be easily
implemented on a VLSI system [6]. The block diagram of
the CORDIC processor is shown in figure 1.

Figure 1: Block Diagram of CORDIC Processor

3. The CORDIC Algorithm
Figure 2 shows the graphical representation of CORDIC
algorithm. The basic concept of the CORDIC computation is
to decompose the desired rotation angle into weighted sum
of a set of predefined elementary rotation angles such that
rotation through each of them can be accompolished with
simple shift-and-add operations [2].

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 1, Issue 1, April 2012
All Rights Reserved © 2012 IJRDASE

Figure 2: Graphical representation of CORDIC algorithm

In the above figure it has been considered an initial vector
P1(X,Y), which is rotated by angle Ф to get the final vector
P2(X’,Y’). Rotating a vector in a Cartesian plane by the
angle Ф (anti-clockwise) can be arranged such that:-

x’ = xcos Ф – ysin Ф
y’ = ycos Ф + xsin Ф

The above equations are further reduced to:-
x’ = cos Ф(x – ytan Ф)
y’ = cos Ф(y + xtan Ф)

If the rotation angles are restricted such that Tan (Ф) = ±2-I
the multiplication by the tangent term is reduced to a simple
shift operation. Arbitrary angles of rotation are obtainable
by performing a series of successively smaller elementary
rotations. Those angular values are supplied by a small
lookup table (one entry per rotation) or are hardwired,
depending on the implementation type. However, the
required micro-rotations are not perfect rotations, they
increase the length of the vector (pseudo-rotation) and in
order to maintain a constant vector length (true rotation), the
obtained results have to be scaled by a factor K. Removing
the scaling constant from the iterative equations yields a
shift-add algorithm for vector rotation.

4. CORDIC Architecture:
CORDIC has following architectures:-

A. Folded Word Serial Architecture:
A folded world serial design is also known as iterative bit-
parallel design which is obtained simply by duplicating each
of the three difference equation shown in hardware.

Figure 3: Folded Word serial Architecture

B. Unfolded Parallel Design:
The iterative nature of the CORDIC processor discussed
above demands that the processor has to perform iterations
at n times the data rate. The iteration process can be
unfolded so that each of n processing elements always
performs the same iteration. A direct application of the
unfolding transformation is to design parallel processing
architectures from serial processing architectures. An
unfolded CORDIC processor is shown in figure 4.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 1, Issue 1, April 2012
All Rights Reserved © 2012 IJRDASE

Figure 4: Unfolded Parallel Architecture

5. Binary Angular Measurement:
The CORDIC algorithm is designed using VHDL and all the
input values are given in binary format and hence, the output
generated is also in binary. The initial coordinates (x,y) can
be easily represented in binary format by the decimal to
binary conversion rule (division by 2). But the angular value
Ф, needs to be converted into binary format following a
certain standardization, which is given in the following
table:-

Table 1 : Standard Angular Repesentation
Angle
Value
(degree)

Decimal
Equivale
nt

Binary
Representatio
n

180 2048 10000000000
0

90 1024 01000000000
0

45 512 00100000000
0

22.5 256 00010000000
0

11.25 128 00001000000
0

5.625 64 00000100000
0

2.8125 32 00000010000
0

1.40625 16 00000001000

0
0.703125 8 00000000100

0
0.3515625 4 00000000010

0
0.1757812
5

2 00000000001
0

0.0878906
3

1 00000000000
1

In the above table it has been considered: 180º is equivalent
to decimal value 2048, i.e. 180º ≡ 2048 and the binary
representation is in a 12-bit format. In the previous chapter it
has been discussed about breaking down the angle Ф into
elementary rotation, such that, tan Ф = ±2-i. The restricted
set of angles in binary format in table satisfying the above
rule, with the generated error.

Table 2 : Required Angle-Error Table
Requir

ed
Angle
(degre

e)

Obtained
Binary
Value

Angular
equivalen

t of
Binary
Value

(degree)

Generate
d Error
(degree)

45 001000000
000

45 0

26.6 000100101
111

26.23085
938

0.03085
938

14.03 000010100
000

14.0625 0.0325

7.125 000001010
001

7.119140
625

0.00585
9

3.576 000000101
000

3.515625 0.06037
5

1.7899 000000010
100

1.757812
5

0.03208
75

0.895 000000001
010

0.878906
25

0.01609
375

0.4476 000000000
101

0.439453
125

0.00814
68

0.2238 000000000
011

0.263671
875

0.03987
1

0.1 000000000
001

0.087890
625

0.01210
9

A. Assumptions
While providing the inputs to the initial co-ordinates it has
been assumed that, if the input angular value ≤ 45º, then the
inputs (x,y) are (1,0) or else (0,1).

B. Design Steps:
At first it is assumed that initial vector is rotated by 45º.
STEP1: adding the ‘0’ with the first stored angle (45º) and
storing the value in a variable t0.
STEP2: Now comparing t0 with the given input table

 If the input angle > t0, then comparator output, z0
=’0’ and clockwise rotation is done.

 If the input angle < t0, then comparator output z0 =
‘1’ and anticlockwise rotation is done

STEP3: Input to shift registers are the given initial co-
ordinates or the input to a particular iteration step: xi, yi.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 1, Issue 1, April 2012
All Rights Reserved © 2012 IJRDASE

Now depending on the iteration step (value of i), xi and yi
are right bit shifted and then added or subtracted depending
upon the value of the decision vector z0, with yi and xi
respectively to generate xi+1 and yi+1.
STEP4: the value of t0 is added to the next stored angle
(26.6º) or the next stored value (26.6º) is subtracted from t0,
depending on the value of z0. The result generated is stored
in variable t1.
STEP5: Steps 2 to 4 are repeated for the required number of
iterations to get the desired result.
STEP6: on completion of the entire iterative process, the
scaling factor K, discussed in previous chapter is
introduvced in the design. The result obtained from step5,
i.e. the final output value of x and y is right bit-shifted by
the value of K to get the accurate result. The constant term is
desired using controlled shift registers and adders to
generate the value almost equal to 0.60725.

6. Result and Discussion:
Both the architectures are designed on Xilinx using VHDL
and the results are computed on Intel Pentium G630, RAM 4
GB, 32 bit operating system using ModelSim simulator.
As angle has to be input in hexadecimal form. Hence,
converting angle (degree) into Hexadecimal form
For 30 degree ---
1 degree= Pi/180 rad
30Degree= 30*pi/180 0.5423……. (D) D*2^22
2182A4(H) --- 2 bits reserved for quadrant(Sign)
Angle: 2182A4(H)
Sin: 200003(H) H/2^22D
Cos: 376cf9(H)
Figure 5 illustrates the simulation result for 0 degree
(000000 H). It shows sin = 000000H and cos = 4000003(H)
= 1.0000007152557373046875.

Figure 5: Simulation result for 0º

Figure 6 illustrates the simulation result for 30 degree
(2182A4 H). It shows sin = 200003 (H) =
0.50000071525573730 and cos = 376CF9 (H) =
0.8660261631011962.

Figure 6: Simulation result for 30º angle

Figure 7 illustrates the simulation result for 45 degree
(3243F6 H). It shows sin = 2D413A(H) =
0.707106113433837890625 and cos = 2D410(H) =
0.7071075439453125.

Figure 7: Simulation result for 45º

Figure 8 illustrates the simulation result for 60 degree
(430548 H). It shows sin = 376CF9 (H) and cos =
200003(H).

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 1, Issue 1, April 2012
All Rights Reserved © 2012 IJRDASE

Figure 8: Simulation result for 60º angle

Figure 9 illustrates the simulation result for 90 degree
(6487ED H). It shows sin = 400000(H) and cos =
FFFFFC(H).

Figure 9: Simulation result for 90º

All the above result are summarized in table 3. Angle are fed
in hexadecimal forms and also the values of sin and cosine
are in hexadecimal form.

Table 3: Results for Word Serial CORDIC

Angle in
degree

Angle in
Hex

Sin (H) Cos (H)

0 000000 000000 400000
30 2182A4 200003 376CF9
45 3243F6 2D413A 296584
60 430548 376CF9 07CCB4
90 6487ED 400000 FFFFFC

Below figure 10 shows external RTL of CORDIC and table
4 shows the device utilization.

Figure 10: External RTL of CORDIC

Table 4: Device Utilization Summary of Pipelined

CORDIC
Device Utilization Summary (Estimated Values)

Logic Utilization Used Available Utilization
No. of Slices 397 2352 16%

No. of Slice FFs 745 4704 15%
No. of 4 i/p LUTs 725 4707 15%

No. of bonded IOBs 50 288 17%
No. of GCLKs 1 4 25%

7. Conclusions:
The CORDIC algorithms presented in this project are well
known in the research. The trigonometric CORDIC
algorithms were originally developed as a solution for real
time navigation problems. The original work is credited to
Jack Volder. The CORDIC algorithm has found its way into
diverse application including the 8087 math coprocessor, the
HP-35 calculator, radar signal processors and robotics.
CORDIC rotation has also been proposed for computing
Discrete Fourier, Discrete Cosine, Singular value
decomposition.
CORDIC Word Serial Architecture offers low Cost in
comparison with pipelined architectecture as it utilizes less
resources. Hence these finds application in math Processor
and handheld calculators where low cost is primary
requirement. Whereas, Pipelined architecture finds
application in navigation devices used in ships and air-
planes due to its high speed and accuracy.

References:
[1] Volder, J. (1959). The CORDIC Trigonometric Computing Technique.
IRE Transactions on Electronic Computing(8), 330-334.
[2] Butner, Y. W. (1987). A new architecture for robot control. IEEE
International Conference on Robotics and Automation, 664-670.
[3] Banerjee, A. S. (2001). FPGA realization of a CORDIC based FFT
processor for biomedical signal processing. Microprocessors and
Microsystems, 131–142.
[4] Pramod K. Meher, J. V.-B. (2009). 50 Years of CORDIC:Algorithms,
Architectures and Applications. IEEE.
[5] S. Sathyanarayana, S. R. (2007). Unified CORDIC based processor for
image processing. International Conference on Digital Signal Processing,
15, 343-346
[6] Jean-Claude Bajard, S. K.-M. (1994). BKM: A New Hardware
Algorithm. IEEE, 43(8), 955-963.
[7] D. S. Cochran (1997). Algorithm & accuracy in the HP 35, Hewlwtt-
Packard Journal,23,10.

