
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 3, Issue 1, March 2013
All Rights Reserved © 2013 IJRDASE

Implementation of N-Bit Divider using VHDL

Abstract-Division is the inverse of multiplication, but it differs from
multiplication in many aspects. The major difference is that division is
a shift-and-subtract-divisor operation, while multiplication is a shift
and-add-multiplicand operation. The results of one subtraction
determine the next operation in a division sequence. Thus, division has
an inherent serial dependency. This problem does not occur in
multiplication, because all summands are generated simultaneously.
Next, division is not a deterministic.
SRT dividers are common in modern floating point units. Higher
division performance is achieved by retiring more quotient bits in each
cycle. Previous research has shown that realistic stages are limited to
radix-2 and radix-4. Higher radix dividers are therefore formed by a
combination of low radix stages. In this paper, we present an analysis
of the n-bit divider and Comparative analysis of different dividers in
case of delays and performance. We show the performance and area
results for a wide variety of divider architectures and implementations.
We conclude that divider performance is only weakly sensitive to
reasonable choices of architecture but significantly improved by
restoring and non restoring techniques.

Keywords-- Divider, Modelsim, SRT Algorithm, Xilinx

Introduction:
A simple and widely implemented class of division
algorithm is digit recurrence. The most common
implementation of digit recurrence division in modern
microprocessors is SRT division, taking its name from the
initials of Sweeney, Robertson [1] and Tocher [2], who
developed the algorithm independently at approximately the
same time. SRT division uses subtraction as the fundamental
operator to retire a fixed number of quotient bits in every
iteration. Two fundamental works on SRT division are those
of Atkins [3], the first major analysis of SRT algorithms,
and Tan [4], a derivation of high-radix SRT division and an
analytic method of implementing SRT look-up tables.
Ercegovac and Lang [5] provide a comprehensive treatment
of the theory of SRT division and square root. Although
division is typically an infrequent operation, ignoring its
implementation significantly degrades system performance
for many applications.
Various techniques have been proposed for increasing
division performance, including staging of simple low-radix
stages, overlapping sections of one stagewith another stage,
and prescaling the input operands. All of these methods
introduce area-performance tradeoffs. Ercegovac and Lang
[5] analyze the tradeoffs of using several of these
optimizations in the context of static CMOS standard-cells.
Williams [8] presents a self-timed dynamic CMOS divider
comprising a ring of five radix-2 stages that incorporates
several of these techniques, and he also presents an analysis
of the performance and area effects of the architectural
components. Prabhu [9] presents the tradeoffs encountered
when designing the Sun UltraSparc radix-8 divider.
In contrast to previous works, this paper analyzes in detail
the effects of both circuit style and divider architecture on
the area and performance of divider implementations. We
present the performance results using the technology
independent metric of fanout-of-4 inverter delay. We are

therefore able to extrapolate our results to future process
technologies. While the discussion here is devoted to
division, the theory of square root computation is an
extension of the theory of division. Accordingly, most of the
analyses presented here can also be applied to the design of
square root units.

2 SRT Division:
Performing division requires making a choice of quotient
digits starting with the most significant, and progressing to
the least significant digits. The quotient digit decision is
made as a part of each iteration which recomputes the partial
remainder based on the last partial remainder and quotient
digit. The complete quotient is accumulated from the
equation:

Q = ∑ 푞ir-i

where
r is the radix
N is the number of quotient digits calculated
Q is the accumulated quotient result with a precision of r -(n-l)

qi is the quotient digit determined from stage i
Since in binary hardware the full quotient result is easiest to
form if it is merely the concatenation of the bits of the
individual digits, we set the radix r = 2” where m is the
number of quotient bits determined at each stage.
In irredundant division, the quotient digits are in the set (0, .
. . . r- l}, and the full quotient has only a single valid
representation since each digit position in the quotient has
only a single correct possibility. Unfortunately, determining
the correct digit at each position requires comparison of the
entire partial remainder, and this means that the entire partial
remainder must be computed before making each quotient
digit selection. This computation requires a complete carry
propagation along the length of the partial remainder before
each quotient digit may be selected [10]. These irredundant
division schemes are much slower than multiplication
because multiplication does not require such a carry
propagation in order to compute partial results.
A complete carry propagation in each iteration can be
avoided by making the set of valid quotient digits redundant
by including both positive and negative integers. In this
method, the divisor and dividend must be normalized to the
same binary range, and the valid quotient digits for a
maximum quotient digit p are in the set {-p, 0, p}
which is symmetric about, and includes, zero. The quotient
digit chosen at each stage in the division determines the
operation computing the next partial remainder according to
the equation:

Ri+1 =rRi - Dqi
where
Ri is the partial remainder output from stage i
D is the Divisor
and the sequence is initialized with

rR0 = the Dividend

Raghawendra Sharma
M.Tech. Scholar,
S. V. U., Merut, U.P., India
robie2007@gmail.com

Anurag Banoudha
Guide,
Electrical Engg.
iisc.anurag@gmail.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 3, Issue 1, March 2013
All Rights Reserved © 2013 IJRDASE

3. Methodology:
To avoid the delay of the carry propagation, the following
applet uses a stack of borrow-save "BS" adders/subtractors.
The "tail" cell, variant of the "SC" and "AS" cells, is
controlled by two bits and executes one of the three
following operations:

an addition : Rj-1 = Rj + 2j-1 * D
a subtraction : Rj-1 = Rj – 2j-1 * D

an identity : Rj-1 = Rj

This operation is selected according to the sign of the partial
remainders Rj. To always know precisely this sign would
require the examination of all the remainder's digits. It
suffices to check only three. Moreover, the position of the
three digits is known: the least significant one is aligned
with the most significant non-zero bits of D. To nail down
this digit position, D is "normalized", that is the position of
its first '1' bit is fixed. Let us call this position 0 and
accordingly D's first bit d0. Thus d0= '1'. For an n-bit
divider, 2n-2–1 < D < 2n-1.

The vertical arrow "view" next to the button displays digits
or bits or moves the decimal point right after the most
significant digit of D as with a mantissa or after the least
significant digit as with an integer.
A "conditional adder/subtractor" outputs S from one of the
three following equations:

if q = '-1' then S = R + D ;
if q = '0' then S = R ;

if q = '1' then S = R – D ;

Each "tail" cell carries out a one-bit addition/subtraction.
The carry is not propagated to the "tail" cell at left but fed
down directly to the "tail" cell below (next row). The delay
is independent from the number of digits.
The "conditional adder/subtractor" function is abstracted by
its transfer function called "Robertson's diagram". To
converge the division imposes moreover that -2*D R
2*D. If - D R 2 then S has two possible values.

Fig. 1. SRT divider

A. SRT division with divider range reduction:
The previous division is simple because the fist bit d0 of the
divider D is always '1'. It may be even further simplified if
the two first bits d0 and d1 of the divider D are reduced to
"1 0" thanks to the operation.

if d0 then { D' = D*3/4 ; A' = A*3/4 } else { D' = D ; A' =

A }
This multiplication of both A and D by the same constant
does not affect the quotient Q, but on the other hand the

final remainder R is also multiplied. For an n-bit divider, 2n-
1–1 < D < 2n-1 + 2n-2.
Let = r0 + r1* 0.5 be the "head" cell input value.

if > 0.5 then { s1 = – 1.5 ; q = '+1'; }
if = 0.5 then { s1 = 0 ; q = '- 0' ; }

if = 0 then { s1 = 0 ; q = '+ 0' ; } or { s0 = - 0.5 ; q = '- 0' ;
}

if = - 0.5 then { s1 = - 0.5 ; q = '+ 0' ; }
if < - 0.5 then { s1 = + 1 ; q = '-1' ; }

Here the difference between the two 0 representations for q :
'+ 0' and '- 0' matters.

0
0

0

0

0

1 0 0 0 0 0 0 0 0

0

Tai

Tai

Tai

Tai

Tai

Tai

Head

 Head

Head

 Head

Tai

Tai

Tai

Tai

Tai

Tai

0

0

0 0 0 0 0

a

a

a
2

a
3

a
4

aaa d d d d

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 3, Issue 1, March 2013
All Rights Reserved © 2013 IJRDASE

B. Quotient converter:
The quotient Q is in "BS" redundant notation. The
conversion into a conventional binary representation is
obtained thanks to an adder (in fact a subtractor). For the
subtraction, '0' gives 'P', '1' gives 'G' et '-1' gives 'K'. Since
the digits qj are obtained sequentially, most significant digit
first, the conversion can be carried out in parallel with the
quotient digits selection by the "head" cells.
Let "Ratio" be the "head" cell and "BK" cell delays ratio.
The higher this ratio, the more delay available thus the
simpler the converter. But the higher this ratio, the less delay
is gained by the concurrence of the converter.

4. Result and Discussion:
In case of 16-bit divider we took 16- bit dividend is
“0000000010101010” and 16- bit divisor is
“0000000000000010” then the reminder is
“0000000000000000”. In fig 2 we have shown the
simulation result fir 16-bit divider.

Fig 2. Simulation Result for 16 Bit Divider

In case of 8-bit divider we took 8- bit dividend is
“10101010” and 8- bit divisor is “00000010” then the
reminder is “00000000”. In fig 3 we have shown the
simulation result fir 8-bit divider.

Fig. 3. Simulation Result for 8 Bit Divider

In case of 4-bit divider we took 4- bit dividend is “1010”
and 4- bit divisor is “0010” then the reminder is “0000”. In
fig 4 we have shown the simulation result fir 4-bit divider.

Fig. 4. Simulation Result for 4 Bit Divider

In case of n-bit divider we took as a example 11- bit
dividend is “01010101010” and 11- bit divisor is
“00000000010” then the reminder is “00000000000”. In fig
5 we have shown the simulation result fir n-bit divider.

Fig. 5. Simulation Result for n Bit Divider

Table 1. Result Comparison

Divider

Logic
Delay (ns)

Route Delay
(ns)

Total
Delay
(ns)

4-Bit
Divider 5.753 1.755 7.508

8- Bit
Divider 5.753 1.332 7.085

16- Bit
Divider 5.753 1.566 7.319

n- Bit
Divider 6.302 2.601 8.903

5. Conclusion:
In 4-bit divider the logic delay is 5.753 ns and route delay is
1.755 ns then the total delay for 4-bit divider is 7.508 ns. In
case of 8-bit divider the logic delay is 5.753 ns and route
delay is 1.332 ns then the total delay for 8-bit divider is
7.085 ns. In case of 16-bit divider the logic delay is 5.753 ns
and route delay is 1.566 ns then the total delay for 16-bit
divider is 7.319 ns. In case of n-bit divider the logic delay is
6.302 ns and route delay is 2.601 ns then the total delay for
n-bit divider is 8.903 ns. If we look simply then we can say
that the total delay of n-bit divider is greater than rest of
Dividers but we can not decide which divider is required is

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

Available online at: www.ijrdase.com Volume 3, Issue 1, March 2013
All Rights Reserved © 2013 IJRDASE

everywhere. So that if we required three different dividers
like 4, 8, 16-bit dividers then total delay will be 21.912 ns.
That is why we use n-bit divider in place of these different
dividers. Then the delay will be just 8.903 ns. This delay is
clearly less then from these all these dividers. Here we are
talking about just three dividers but practically we need
more bit dividers and more dividers.
So if we did not take n-bit divider then we has to design
many more different dividers for different bit. They will
defiantly take more time, area, power and also cost. But in
VLSI we have to save all of these. Then the result is n-bit
divider is taking less power, less area and reduce the cost.

References:
[1] J. E. Robertson, “A new class of digital divisionmethods,” IRE Trans.
Electronic Computers, vol. EC-7, pp. 218–222, Sept. 1958.
[2] K. D. Tocher, “Techniques of multiplication and division for automatic
binary computers,” Quart. J. Mech. Appl. Math., vol. 11, pt. 3, pp. 364–
384, 1958.
[3] D. E. Atkins, “Higher-radix division using estimates of the divisor and
partial remainders,” IEEE Trans. Computers, vol. C-17, no. 10, Oct. 1968.
[4] K. G. Tan, “The theory and implementation of highradix division,” in
Proc. 4th IEEE Symp. Computer Arithmetic, pp. 154–163, June 1978.
[5] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Kluwer Academic Publishers,
1994.
[6] S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,” IEEE Trans. Computers, vol. 46, no. 2, pp. 154–
161, Feb. 1997.
[7] S. F. Oberman and M. J. Flynn, “Division algorithms and
implementations,” to appear in IEEE Trans. Computers, 1997.
[8] T. E.Williams and M. A. Horowitz, “A zero-overhead self-timed 160-ns
54-b CMOS divider,” IEEE J. Solid- State Circuits, vol. 26, no. 11, pp.
1651–1661, Nov. 1991.
[9] J. A. Prabhu and G. B. Zyner, “167 MHz radix-8 floating point divide
and square root using overlapped radix-2 stages,” in Proc. 12th IEEE Symp.
Computer Arithmetic, pp. 155–162, July 1995.
[10] Raghawendra Sharma, "Implementation of CORDIC based Processor
using VHDL" International Journal of Research and Development in
Applied Science and Engineering, Volume 2, Issue 1, March 2012.

