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Implementation of N-Bit Divider using VHDL 
 
 
 
 
 
 

Abstract-Division is the inverse of multiplication, but it differs from 
multiplication in many aspects. The major difference is that division is 
a shift-and-subtract-divisor operation, while multiplication is a shift 
and-add-multiplicand operation. The results of one subtraction 
determine the next operation in a division sequence. Thus, division has 
an inherent serial dependency. This problem does not occur in 
multiplication, because all summands are generated simultaneously. 
Next, division is not a deterministic. 
SRT dividers are common in modern floating point units. Higher 
division performance is achieved by retiring more quotient bits in each 
cycle. Previous research has shown that realistic stages are limited to 
radix-2 and radix-4. Higher radix dividers are therefore formed by a 
combination of low radix stages. In this paper, we present an analysis 
of the n-bit divider and Comparative analysis of different dividers in 
case of delays and performance. We show the performance and area 
results for a wide variety of divider architectures and implementations. 
We conclude that divider performance is only weakly sensitive to 
reasonable choices of architecture but significantly improved by 
restoring and non restoring techniques. 
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Introduction: 
A simple and widely implemented class of division 
algorithm is digit recurrence. The most common 
implementation of digit recurrence division in modern 
microprocessors is SRT division, taking its name from the 
initials of Sweeney, Robertson [1] and Tocher [2], who 
developed the algorithm independently at approximately the 
same time. SRT division uses subtraction as the fundamental 
operator to retire a fixed number of quotient bits in every 
iteration. Two fundamental works on SRT division are those 
of Atkins [3], the first major analysis of SRT algorithms, 
and Tan [4], a derivation of high-radix SRT division and an 
analytic method of implementing SRT look-up tables. 
Ercegovac and Lang [5] provide a comprehensive treatment 
of the theory of SRT division and square root. Although 
division is typically an infrequent operation, ignoring its 
implementation significantly degrades system performance 
for many applications.  
Various techniques have been proposed for increasing 
division performance, including staging of simple low-radix 
stages, overlapping sections of one stagewith another stage, 
and prescaling the input operands. All of these methods 
introduce area-performance tradeoffs. Ercegovac and Lang 
[5] analyze the tradeoffs of using several of these 
optimizations in the context of static CMOS standard-cells. 
Williams [8] presents a self-timed dynamic CMOS divider 
comprising a ring of five radix-2 stages that incorporates 
several of these techniques, and he also presents an analysis 
of the performance and area effects of the architectural 
components. Prabhu [9] presents the tradeoffs encountered 
when designing the Sun UltraSparc radix-8 divider. 
In contrast to previous works, this paper analyzes in detail 
the effects of both circuit style and divider architecture on 
the area and performance of divider implementations. We 
present the performance results using the technology 
independent metric of fanout-of-4 inverter delay. We are 

therefore able to extrapolate our results to future process 
technologies. While the discussion here is devoted to 
division, the theory of square root computation is an 
extension of the theory of division. Accordingly, most of the 
analyses presented here can also be applied to the design of 
square root units. 
 
2 SRT Division: 
Performing division requires making a choice of quotient 
digits starting with the most significant, and progressing to 
the least significant digits. The quotient digit decision is 
made as a part of each iteration which recomputes the partial 
remainder based on the last partial remainder and quotient 
digit. The complete quotient is accumulated from the 
equation:  

Q = ∑ 푞ir-i 

where 
r is the radix 
N is the number of quotient digits calculated 
Q is the accumulated quotient result with a precision of r -(n-l) 

qi is the quotient digit determined from stage i 
Since in binary hardware the full quotient result is easiest to 
form if it is merely the concatenation of the bits of the 
individual digits, we set the radix r = 2” where m is the 
number of quotient bits determined at each stage. 
In irredundant division, the quotient digits are in the set (0, . 
. . . r- l}, and the full quotient has only a single valid 
representation since each digit position in the quotient has 
only a single correct possibility. Unfortunately, determining 
the correct digit at each position requires comparison of the 
entire partial remainder, and this means that the entire partial 
remainder must be computed before making each quotient 
digit selection. This computation requires a complete carry 
propagation along the length of the partial remainder before 
each quotient digit may be selected [10]. These irredundant 
division schemes are much slower than multiplication 
because multiplication does not require such a carry 
propagation in order to compute partial results. 
A complete carry propagation in each iteration can be 
avoided by making the set of valid quotient digits redundant 
by including both positive and negative integers. In this 
method, the divisor and dividend must be normalized to the 
same binary range, and the valid quotient digits for a 
maximum quotient digit p are in the set {-p, . . . . 0, . . . . p} 
which is symmetric about, and includes, zero. The quotient 
digit chosen at each stage in the division determines the 
operation computing the next partial remainder according to 
the equation: 

Ri+1 =rRi - Dqi 
where 
Ri is the partial remainder output from stage  i 
D is the Divisor 
and the sequence is initialized with 

rR0 = the Dividend 
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3. Methodology: 
To avoid the delay of the carry propagation, the following 
applet uses a stack of borrow-save "BS" adders/subtractors. 
The "tail" cell, variant of the "SC" and "AS" cells, is 
controlled by two bits and executes one of the three 
following operations: 

an addition : Rj-1 = Rj + 2j-1 * D 
a subtraction : Rj-1 = Rj – 2j-1 * D 

an identity : Rj-1 = Rj 
 
This operation is selected according to the sign of the partial 
remainders Rj. To always know precisely this sign would 
require the examination of all the remainder's digits. It 
suffices to check only three. Moreover, the position of the 
three digits is known: the least significant one is aligned 
with the most significant non-zero bits of D. To nail down 
this digit position, D is "normalized", that is the position of 
its first '1' bit is fixed. Let us call this position 0 and 
accordingly D's first bit d0. Thus d0= '1'. For an n-bit 
divider, 2n-2–1 < D < 2n-1. 

The vertical arrow  "view" next to the button displays digits 
or bits or moves the decimal point right after the most 
significant digit of D as with a mantissa or after the least 
significant digit as with an integer. 
A "conditional adder/subtractor" outputs S from one of the 
three following equations: 
  

if q = '-1' then S = R + D ; 
if q = '0' then S = R ; 

if q = '1' then S = R – D ; 
 

Each "tail" cell carries out a one-bit addition/subtraction. 
The carry is not propagated to the "tail" cell at left but fed 
down directly to the "tail" cell below (next row). The delay 
is independent from the number of digits. 
The "conditional adder/subtractor" function is abstracted by 
its transfer function called "Robertson's diagram". To 
converge the division imposes moreover that -2*D R 
2*D. If - D R 2 then S has two possible values. 
 

 
 

Fig. 1. SRT divider 
 
 
A. SRT division with divider range reduction: 
The previous division is simple because the fist bit d0 of the 
divider D is always '1'. It may be even further simplified if 
the two first bits d0 and d1 of the divider D are reduced to 
"1 0" thanks to the operation. 

 
if d0 then { D' = D*3/4 ; A' = A*3/4 } else { D' = D ; A' = 

A } 
This multiplication of both A and D by the same constant 
does not affect the quotient Q, but on the other hand the 

final remainder R is also multiplied. For an n-bit divider, 2n-
1–1 < D < 2n-1 + 2n-2. 
Let  = r0 + r1* 0.5 be the "head" cell input value. 

if > 0.5 then { s1 =  – 1.5 ; q = '+1'; } 
if = 0.5 then { s1 = 0 ; q = '- 0' ; } 

if = 0 then { s1 = 0 ; q = '+ 0' ; } or { s0 = - 0.5 ; q = '- 0' ; 
} 

if = - 0.5 then { s1 = - 0.5 ; q = '+ 0' ; } 
if < - 0.5 then { s1 =  + 1 ; q = '-1' ; } 

Here the difference between the two 0 representations for q : 
'+ 0' and '- 0' matters. 
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B. Quotient converter: 
The quotient Q is in "BS" redundant notation. The 
conversion into a conventional binary representation is 
obtained thanks to an adder (in fact a subtractor). For the 
subtraction, '0' gives 'P', '1' gives 'G' et '-1' gives 'K'. Since 
the digits qj are obtained sequentially, most significant digit 
first, the conversion can be carried out in parallel with the 
quotient digits selection by the "head" cells. 
Let "Ratio" be the "head" cell and "BK" cell delays ratio. 
The higher this ratio, the more delay available thus the 
simpler the converter. But the higher this ratio, the less delay 
is gained by the concurrence of the converter. 
 
4. Result and Discussion: 
In case of 16-bit divider we took 16- bit dividend is 
“0000000010101010” and 16- bit divisor is 
“0000000000000010” then the reminder is 
“0000000000000000”. In fig 2 we have shown the 
simulation result fir 16-bit divider. 
 

 
Fig 2. Simulation Result for 16 Bit Divider 

 
In case of 8-bit divider we took 8- bit dividend is 
“10101010” and 8- bit divisor is “00000010” then the 
reminder is “00000000”. In fig 3 we have shown the 
simulation result fir 8-bit divider. 
 

 
Fig. 3. Simulation Result for 8 Bit Divider 

 
In case of 4-bit divider we took 4- bit dividend is “1010” 
and 4- bit divisor is “0010” then the reminder is “0000”. In 
fig 4 we have shown the simulation result fir 4-bit divider. 
 

 
Fig. 4. Simulation Result for 4 Bit Divider 

 
In case of n-bit divider we took as a example 11- bit 
dividend is “01010101010” and 11- bit divisor is 
“00000000010” then the reminder is “00000000000”. In fig 
5 we have shown the simulation result fir n-bit divider. 
 

 
Fig. 5. Simulation Result for n Bit Divider 

 
 

Table 1. Result Comparison 
 

Divider 

Logic 
Delay (ns) 

Route Delay 
(ns) 

Total 
Delay 
(ns) 

4-Bit 
Divider 5.753 1.755 7.508 

8- Bit 
Divider 5.753 1.332 7.085 

16- Bit 
Divider 5.753 1.566 7.319 

n- Bit 
Divider 6.302 2.601 8.903 

 
 
5. Conclusion: 
In 4-bit divider the logic delay is 5.753 ns and route delay is 
1.755 ns then the total delay for 4-bit divider is 7.508 ns. In 
case of 8-bit divider the logic delay is 5.753 ns and route 
delay is 1.332 ns then the total delay for 8-bit divider is 
7.085 ns. In case of 16-bit divider the logic delay is 5.753 ns 
and route delay is 1.566 ns then the total delay for 16-bit 
divider is 7.319 ns. In case of n-bit divider the logic delay is 
6.302 ns and route delay is 2.601 ns then the total delay for 
n-bit divider is 8.903 ns. If we look simply then we can say 
that the total delay of n-bit divider is greater than rest of 
Dividers but we can not decide which divider is required is 
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everywhere. So that if we required three different dividers 
like 4, 8, 16-bit dividers then total delay will be 21.912 ns. 
That is why we use n-bit divider in place of these different 
dividers. Then the delay will be just 8.903 ns. This delay is 
clearly less then from these all these dividers. Here we are 
talking about just three dividers but practically we need 
more bit dividers and more dividers. 
So if we did not take n-bit divider then we has to design 
many more different dividers for different bit. They will 
defiantly take more time, area, power and also cost. But in 
VLSI we have to save all of these. Then the result is n-bit 
divider is taking less power, less area and reduce the cost. 
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