
 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

Comparative Analysis of Booth Multiplier using
Radix-2 and Radix-4 Technique using VHDL

Abstract-In VLSI circuits area, power and delay are the key
design factors. However, there exists a trade-off amongst them
for an optimal design. Multiplier, being a very vital part in the
design of microprocessor, graphical systems, multimedia
systems, DSP system etc. Nearly 15 percent of total IC power is
consumed by multiplication alone. It is very important to have
an efficient design in terms of performance, area, speed of the
multiplier and for the same Booth’s multiplication algorithm
provides a very fundamental platform for all the new advances
made for high end multipliers meant for faster multiplication
with higher performance. The algorithm provides an efficient
encoding of the bits during the first steps of the multiplication
process. This paper is based on configurable logic for 16-bit
Booth multiplier using Radix2 and radix 4 Method. Booth
multiplier can be configured to perform multiplication on 16-
bit operands. The multiplier will detect the range of the
operands through configuration register. The configuration
register can be configured through input ports. The multiplier
has been synthesized using Xilinx 14.5 and it has achieved a
minimum combinational delay. Modelsim is responsible for
simulation part in this work.

Keywords-- Booth Multiplier, Radix-2, Radix-4.

1. Introduction
Arithmetic and logic operations play an important role in
digital circuits. Addition, multiplication, exponensation are
important fundamental function in arithmetic operations and
have wide applications in the field of engineering. The
demand for high speed processing has been increasing as a
result of expanding computer and signal processing
applications. Higher throughput arithmetic operations are
important to achieve the desired performance in many real-
time signal and image processing applications [1]. Among
these arithmetic operations multiplication is the key of
almost every digital circuit. It is used extensively in many
VLSI systems such as communication system architectures
and microprocessors. Multiplication-based operations such
as Multiply and Accumulate (MAC) and inner product are
among some of the frequently used Computation-Intensive
Arithmetic Functions (CIAF) currently implemented in
many Digital Signal Processing (DSP) applications such as
Convolution, Fast Fourier Transform (FFT), filtering, in
microprocessors in its arithmetic and logic unit and in
graphics [2]. Digital multipliers are the most commonly
used components in any digital circuit design. They are fast,
reliable and efficient components that are utilized to
implement any operation. Depending upon the arrangement
of the components, there are different types of multipliers
available each offering different advantages and having
tradeoff in terms of speed, circuit complexity, area and
power consumption. Reducing the time delay and power

consumption are very essential requirements for many
applications [1][3].Multipliers have become a basic building
block in computations especially in digital signal processing.
Multipliers not only take a significant part of time delay,
area cost but also cause high power consumption. To
improve the speed and power dissipation of the multipliers,
many techniques and design methodologies have been
proposed. Most of the designs are targeted at a specific
technology and require redesign for a new process
technology. As a result, it is necessary to develop
computation-efficient multipliers suitable for portable
multimedia and digital processing systems, which require
flexible processing ability, lesser switching activity and
short design cycle. The biggest challenge faced with use of
simple and conventional multipliers for multimedia and DSP
systems is that the multiplier coefficients are not constant. If
it is constant, a general multiplier can be simplified to a
network of shift, adders and subtractors to reduce power
consumption [4]. However, this kind of simplified multiplier
is inflexible which makes it to be unsuitable for
multiplication operations with varying coefficients. To
achieve improved processing ability, various techniques for
reconfigurable multipliers that are capable of supporting
multiple-precision multiplications have been developed.
Advanced VLSI technology has given designer the freedom
to integrate many complex components, which was not
possible in the past. Various high speed multipliers have
been proposed and realized [5]. Among these multiplication
algorithms Booth’s multiplication is showing better
performance. In this dissertation, an attempt has been made
to combine configuration and range detection technique to
design configurable Booth multiplier (CBM) that supports
single 4-bit, single 8-bit, single 12-bit or single 16-bit
multiplication. This CBM depends upon the output of the
range detection technique with highly simplified circuit [16].

2. Related Work:
Different adders are compared by using critical parameters
like Delay, Power, and Area etc. to make clear ideas of
which adder was best suited for situation. After comparing
all, it was concluded that Carry Select Adders are best suited
for situations where speed is the critical concern [6].
Coming to Multipliers ,implementation of Radix-2 Booth
Multiplier is done using different adder and came to final
conclusion that parallel multipliers are much better than the
serial multipliers due to less area consumption and hence the
less power consumption [6].

In many DSP applications, all of multiplier output bits were
not used, but only upper bits of output were used. Kidamhi

Niharika
Electronics & Communication.
S.I.T.M., U.P.T.U., Lucknow, (U.P.)
niharikaregecide@gmail.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

proposed truncated unsigned multiplier for this idea. This
truncation scheme can be applied to Booth multiplier which
can be used in real DSP systems more efficiently. Also,
truncated Booth multiplier guaranteed 0 input to 0 output
that was not provided before. Truncated Booth multiplier
reduced about 37-48 % of area and about 44 % of power
consumption [7].

Different design methods are proposed to develop a modular
approach for optimizing power consumption[7]. It is found
that algorithm based design reduce gate switching activity
considerably and as result power consumption in multiplier
is reduced [8]. It is found that data complexity and various
combination of gate level digital circuit has considerable
impact in power dissipation. Beside this physical design of
the chip can be optimized by using Genetic Algorithm by
analyzing placement option subject to optimum space
allocation. Similarly selection of Booth Algorithm and
Modified Booth Algorithm may reduce power consumption
as consequence of data complexity. It is found that in
multiplier circuit, Modified Booth Algorithm reduces power
consumption as compared to other methods of multiplication
[8].

On making a comparison between radix 2 and radix 4 Booth
multiplier in terms of power saving experimental results
demonstrate that the modified radix 4 Booth multiplier has
22.9% power reduction than the conventional radix 2 Booth
Multiplier [9].

Booth multiplier can be configured based on dynamic range
detection of multipliers and optimized for low power and
high speed operations and which can be configured either
for single 16-bit multiplication operation, single 8-
bitmultiplication or twin parallel 8-bit multiplication is
designed [10]. It was found that Booth Multiplier can
efficiently deactivate ineffective circuitry which were not
produced effective result so that speed of operation gets
increases and device area is reduced so that power gets
reduced .

3. Methodology:
Signed multiplication is a vigilant process. Through
unsigned multiplication there is no need to take the sign of
the number into consideration. Even though in signed
multiplication the same procedure cannot be applied for the
reason that the signed number is in a 2‘s compliment form
which would give inaccurate result if multiplied in an
analogous manner to unsigned multiplication [11]. Unsigned
multipliers cannot be applied to most of the multimedia and
DSP applications due to their signed multiplication
operation [4]. For the standard add-shift operation, each
multiplier bit generates one multiple of the multiplicand to
be added to the partial product. If the multiplier is very
large, then a large number of multiplicands have to be
added. In this case the delay of multiplier is determined
mainly by the number of additions to be performed. If there
is a way to reduce the number of the additions, the
performance will get better. Thus here Booth‘s algorithm
comes in rescue. Booth‘s algorith m conserves the sign of
the end result.

In 1951, Andrew Donald Booth devised a multiplication
algorithm, while doing study on crystallography at Birkbeck
College in Bloomsbury, London known as Booth’s
Algorithm. Booth used desk calculators that were faster at
shifting than adding and created the algorithm to increase
their speed [12]. It is a powerful algorithm for signed-
number multiplication, which treats both positive and
negative numbers uniformly. This algorithm multiplies two
signed binary numbers in two’s complement notation. The
main objective of designing the booth multiplier is to
perform the partial products to reduce the delay and to
increase the speed of the circuit. In this it also reduce the
area of the chip used so the power consumption is also
reduced in this circuit.

Donald Booth made an improvement in the multiplier by
reducing the number of partial products generated. The
Booth recording multiplier scans the three bits at a time to
reduce the number of partial products [13]. These three bits
are: the two bit from the present pair; and a third bit from
the high order bit of an adjacent lower order pair. After
examining each triplet of bits, the triplets are converted by
Booth logic into a set of five control signals used by the
adder cells in the array to control the operations performed
by the adder cells.

To speed up the multiplication Booth encoding performs
several steps of multiplication at once. Booth’s algorithm
takes advantage of the fact that an adder, subtractor is nearly
as fast and small as a simple adder.

From the basics of Booth Multiplication it can be proved
that the addition/subtraction operation can be skipped if the
successive bits in the multiplicand are same. If 3 consecutive
bits are same then addition/subtraction operation can be
skipped. Thus in most of the cases the delay associated with
Booth Multiplication are smaller than that with Array
Multiplier. However the performance of Booth Multiplier
for delay is input data dependant. In the worst case the delay
with booth multiplier is on par with Array Multiplier [14].

The method of Booth recording reduces the numbers of
adders and hence the delay required to produce the partial
sums by examining three bits at a time. The high
performance of booth multiplier comes with the drawback of
power consumption. The reason is large number of adder
cells required that consumes large power [15].

A. Flow Chart of Booth Multiplier
Booth's multiplication algorithm is an algorithm which
multiplies 2 signed integers in 2's complement. The
algorithm is depicted in the figure 1 with a brief description.
This approach uses fewer additions and subtractions than
more straightforward algorithms.

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

Fig. 1. Flow Chart of Booth Multiplier

The multiplicand and multiplier are placed in the M and Q
registers respectively. A 1-bit register is placed logically to
the right of the LSB (least significant bit) Q0 of Q register.
This is denoted by Q-1. A and Q-1 are initially set to 0.
Control logic checks the two bits Q0 and Q-1. If the two bits
are same (00 or 11) then all of the bits of A, Q and Q-1 are
shifted 1 bit to the right. If they are not the same and if the
combination is 10 then the multiplicand is subtracted from A
and if the combination is 01 then the multiplicand is added
with A. In both the cases results are stored in A, and after
the addition or subtraction operation, A, Q and Q-1 are right
shifted. The shifting is the arithmetic right shift operation
where the left most bit namely, An-1 is not only shifted into
An-2 but also remains in An-1. This is to preserve the sign of
the number in A and Q. The result of the multiplication will
appear in the A and Q.

B. Booth Multiplier Architecture
In the booth multiplier architecture there are various
components that are performing certain task as follows:

(1) A 16-bit register M that stores the multiplicand.
(2) 16-bit parallel-load shift register Q that stores the

multiplier initially and the least significant 16 bits
of the final multiplication product.

(3) The 16-bit parallel-load shift registers
ACCUMULATOR that is cleared initially and will
store the most significant 16 bits of the final
multiplication product. ACCUMULATOR and Q
are concatenated such that the bit that shifted out of
ACCUMULATOR will be shifted into Q. Also, the
right shift operation is sign extended.

For example, if ACCUMULATOR stores
1111111111111101 and Q stores 0100000000001111 then

after concatenated right shift operation, ACCUMULATOR
= 1111111111111110 and Q =1010000000000111. Note
that the least significant bit in ACCUMULATOR (= 1)
originally has been shifted to Q as most significant bit.

(4) The 16-bit arithmetic logic unit performs (ALU)
will perform the arithmetic operation of addition,
subtraction or shifting according to the control
signal given by control block and finally pass its
output to 16-bit ACCUMULATOR.

(5) For controlling the operation of the multiplier
CONTROL block Y is used. The control block
provides the necessary control signals depending
upon the input operands.

(6) A 4-bit binary COUNTER is used that give
reference count to the CONTROL block.

Figure 2 shows the diagram of the Booth's multiplier which
multiplies two 16-bit numbers in 2's complement.

Fig. 2. Booth Multiplier Architecture

Booth's algorithm can be implemented in many ways. This
experiment is designed using a controller and a data path.
The operations on the data in the data path are controlled by
the control signal received from the controller. The data path
contains registers to hold multiplier, multiplicand,
intermediate results, data processing units like ALU,
adder/subtractor, counter and other combinational units.
Here the adder/subtractor unit is used as data processing
unit. M holds the multiplicand, Q holds the multiplier. The
counter is a down counter which counts the number of
operations needed for the multiplication. The data flow in
the data path is controlled by the five control signals
generated from the controller, these signals are load (to load
data in registers), add (to initiate addition operation), sub (to
initiate subtraction operation), shift (to initiate arithmetic
right shift operation), dc (this is to decrement counter). The
controller generates the control signals according to the
input received from the data path. Here the inputs are the

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

least significant Q0 bit of Q register, Q-1 bit and count bit
from the down counter.
Recoding scheme used in radix-2 booth multiplier is shown
in the Table 1.

Table 1: Recoding Table for Booth Multiplier
Qn Qn+1 Recoded Bits Operation
0 0 0 Shift
0 1 +1 Add X
1 0 -1 Subtract X
1 1 0 Shift

Table. 2. Modified Radix 4 Recoding Rules

B Zn Partial Product
000 0 0
001 1 1×Multiplicand
010 1 1×Multiplicand
011 2 2×Multiplicand
100 -2 -2×Multiplicand
101 -1 -1×Multiplicand
110 -1 -1×Multiplicand
111 0 0

4. Result and Discussion:
Simulation is the imitation of the operation of a real-world
process or system over time. The act of simulating
something first requires that a model be developed, this
model represents the key characteristics of the selected
physical or abstract system or process. The model represents
the system itself, whereas the simulation represents the
operation of the system over time. For the model under
consideration the simulation results are carried using VHDL
as simulation language and Modelsim as simulator. In the
design of Booth multiplier for radix 2 there are two inputs
namely multiplier [7 :0] and multiplicand [7 : 0] and the
single output Product [16:0]. Output is verified for inputs of
different ranges. In this case the simulation results are
shown for input value in binary for multiplier "00000010"
and for multiplicand "00000010" and we will get the output
in product is "0000000000000100" shown in fig 3:

Fig. 3. Simulation for case 1 using Radix 2

In the design of Booth multiplier for radix 2 there are two
inputs namely multiplier [7 :0] and multiplicand [7 : 0] and
the single output Product [16:0]. Output is verified for inputs
of different ranges. In this case the simulation results are
shown for input value in binary for multiplier "00000010"
and for multiplicand "00000011" and we will get the output
in product is "0000000000000110" shown in fig 4:

Fig. 4. Simulation for case 2 using Radix 2

The multiplier has been synthesized using Xilinx ISE 8.1i.
The RTL Schematic of Booth Multiplier using Radix 2 has
been shown in figure 5 In the RTL schematic of Booth
multiplier multiplicand[7:0] and Multiplier [7:0] represents
the 8-bit input operands and Product(16:0) represents 16-bit
output product, fig 6 shows the internal RTL of the Booth
Multiplier.

Fig. 5. RTL of Booth Multiplier using Radix 2

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

Fig. 6. Internal RTL of Booth Multiplier using Radix 2

In the design of Booth multiplier for radix 4 there are two
inputs namely multiplier [7 :0] and multiplicand [7 : 0] and
the single output Product [16:0]. Output is verified for inputs
of different ranges. In this case the simulation results are
shown for input value in binary for multiplier "00000010"
and for multiplicand "00000010" and we will get the output
in product is "0000000000000100" shown in fig 7:

Fig. 7. Simulation for case 1 using Radix 4

In the design of Booth multiplier for radix 4 there are two
inputs namely multiplier [7 :0] and multiplicand [7 : 0] and
the single output Product [16:0]. Output is verified for inputs
of different ranges. In this case the simulation results are
shown for input value in binary for multiplier "00000010"

and for multiplicand "00000011" and we will get the output
in product is "0000000000000110" shown in fig 8:

Fig. 8. Simulation for case 2 using Radix 4

The multiplier has been synthesized using Xilinx ISE 8.1i.
The RTL Schematic of Booth Multiplier using Radix 4 has
been shown in figure 9 In the RTL schematic of Booth
multiplier multiplicand[7:0] and Multiplier [7:0] represents
the 8-bit input operands and Product(16:0) represents 16-bit
output product, fig 4.10 shows the internal RTL of the Booth
Multiplier.

Fig. 9. RTL of Booth Multiplier using Radix 4

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 8, Issue 2, November 2015
All Rights Reserved © 2015 IJRDASE

Fig. 10. Internal RTL of Booth Multiplier using Radix 4

5. Conclusion:
After going through all the hard work and facing problems,
this project managed to complete its objectives that are to
study the Booth Multiplier and design of Delay Efficient
Booth Multiplier using Radix-2 and Radix-4 Method. The
main objective of designing the Booth multiplier is to
perform the partial products to reduce the delay, increase the
speed of operation and to reduce the power consumption in
the circuit. We have presented a 16-bit Booth multiplier
using Radix2 and Radix4 Method. This multiplier can be
configured to perform 16 bit multiplication depending upon
the output of configuration register. The multiplier will
detect the range of the operands through configuration
register. The configuration register can be configured
through input ports. It also deactivates the redundant
switching activities in ineffective ranges as much as
possible. Moreover, the output product of the multiplier can
be truncated to further decrease power consumption by
sacrificing a bit of output precision. The multiplier has been
synthesized using Xilinx.

References:
[1] Himanshu Thapliyal and Hamid R. Arabnia, “A Time-Area-Power
Efficient Multiplier and Square Architecture Based On Ancient Indian
Vedic Mathematics”, Department of Computer Science, The University of
Georgia, 415 Graduate Studies Research Center Athens, Georgia 30602-
7404, U.S.A ,2003.
[2] Purushottam D. Chidgupkar and Mangesh T. Karad, “The
Implementation of Vedic Algorithms in Digital Signal Processing”, Global
J. of Engng. Educ., Vol.8, UICEE Published in Australia. 2004.
[3] E. Abu-Shama, M. B. Maaz, M. A. Bayoumi, “A Fast and Low Power
Multiplier Architecture”, The Center for Advanced Computer Stu dies, The
University of Southwestern Louisiana Lafayette, 2007.
[4] Shiann Rong Kuang and Jiun-Ping Wang “ Design of Power Efficient
Configurable Booth Multiplier” Vol. 57, No.3, March 2010
[5] A. D. Booth, “A Signed Binary Multiplication Technique”, Quarterly J.
Mech. Appli. Math., vol 4, part2, pp. 236-240 , 1951
[6] Sakshi Rajput,Priya Sharma,Gitanjali and Garima “High Speed and
Reduced Power – Radix-2 Booth Multiplier” International Journal of
Computational Engineering & Management, Vol. 16, Issue 2, March 2013
[7] Kwang Hyun Lee , Chong Suck Rim, “ A Hardware Reduced Multiplier
for Low Power Design” Proceedings of the second IEEE Asia Pacific
Conference,Korea, 2000.

[8] Zamin Ali Khan ,S. M. Aqil Burney , Jawed Naseem, Kashif Rizwan.
“Optimization of Power Consumption in VLSI Circuit” International
Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
[9] Nishat Bano “VLSI Design of Low Power Booth Multiplier”
International Journal of Scientific & Engineering Research, Volume 3,
Issue 2, February -2012
[10] J. Sreenivasulu Reddy , Y.Avanija , M. Mahesh Babu “Dynamic
Range Detection Based Booth multiplier for Low Power and high Speed
Applications” International Journal of Emerging trends in Engineering and
Development Issue 2, Vol.6, September 2012.
[11] Laxman S, Darshan Prabhu R, Mahesh S. Shetty ,Mrs. Manjula BM,
Dr. Chirag Sharma, “FPGA Implementation of Different Multiplier
Architectures” , International Journal of Emerging, vol 3, 2009.
[12] L. D. Van and C. C. Yang, “Generalized low-error ar ea efficient fixed
width multipliers,” IEEE Trans. Circuits System, Reg. Papers, vol. 52, no.
8, pp. 1608–1619, Aug. 2005.
[13] Oscal T. ,C. Chen, Sandy Wang, and Yi-Wen Wu, “Minimization of
Switching Activities of Partial Products for Designing Low-Power
Multipliers”, IEEE Transactions on VLSI Systems, vol. 11, no. 3, June
2003
[14] Tam Anh Chu, “Booth Multiplier with Low Power High Performance
Input Circuitary”, US Patent, 6.393.454 B1, May 21, 2002.
[15] Pravin kumar Parate “ASIC Implementation of 4 Bit Multipliers”,
IEEE Computer society. ICETET, 2008.
[16] R. Sharma et. al., "Implementation of N-Bit Divider using VHDL"
International Journal of Research and Development in Applied Science and
Engineering, Volume 3, Issue 1, March 2013.

