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Abstract-- A well-known common feature of oscillatory 
systems and biological oscillators, in particular, is their 
ability to synchronize. Entrainment of periodic (also 
noisy) self-sustained oscillators by external periodic 
force, or mutual synchronization of several such 
oscillators is well understood and this theoretical 
knowledge is idly used in experimental studies and in the 
modeling of interaction between different physiological 
(subsystems).We investigate synchronization between 
cardiovascular and respiratory systems in healthy 
humans under free-running conditions. For this aim we 
analyze non stationary irregular bivariate data, namely, 
electrocardiograms and measurements of respiratory 
flow. We briefly discuss a statistical approach to 
synchronization in noisy and chaotic systems and 
illustrate it with numerical examples; effects of phase 
and frequency locking are considered. Next, we present 
and discuss methods suitable for the detection of hidden 
synchronous epochs from such data. The analysis of the 
experimental records reveals synchronous regimes of 
different orders and transitions between them; the 
physiological significance of this finding is discussed. 
 
Keywords: EEG , Recurrence, Coupling Phenomenon, and 
Biomedical. 
 
 
1. Introduction: 
Recurrence is a fundamental characteristic of many 
dynamical systems. This recurrence property is exploited to 
characterise the system’s behaviour in phase space. The 
concept of recurrence is used for the analysis of data and to 
study dynamical systems. It is a powerful tool for the 
visualisation of dynamical systems and analysis which was 
introduced by Poincare in 1890 [1]. Thus recurrences 
contain all relevant information about the system’s 
behaviour. The method of Recurrence Plots (RPs) is 
extended to the CRPs. The method of CRPs enables us the 
study of synchronization or time differences between two 
different time series and this is emphasized in a distorted 
main diagonal in the CRP called the LOS. Thus, first we 
introduce the definition of Recurrence plot and Cross 
Recurrence plot and then LOS and its applications to the 
biomedical signals. Complexity measures based on CRPs 
are introduced in the thesis and their applications to 
biomedical signals is studied. In this manner we are able to 
distinguish biomedical signals based on the CRP plots and 

complexity measures values. Next, synchronization analysis 
is also done on driven oscillators and it is used to know 
whether the oscillators are in Phase Synchronization (PS) or 
in non-Phase Synchronization (non-PS). The application of 
the PS is done on biomedical signals and how the 
biomedical signals can be distinguished based on PS is 
studied. Synchronization analysis also includes Generalized 
Synchronization (GS) based on recurrences and its 
application to driven oscillators and biomedical signals is 
observed. 
 
The method of RPs is used to visualise the recurrences of 
the dynamical systems. Suppose we have a trajectory 
{ xሬ⃗ ୧}୧ୀଵ୒  of a system in its phase space [1]. The components 
of these vectors could be position and velocity of a 
pendulum or quantities such as temperature, air pressure, 
humidity and many others for the atmosphere. The 
development of systems is described by a series of these 
vectors, representing a trajectory in an abstract mathematical 
space. Then the corresponding recurrence plot is based on 
the following recurrence matrix: 
R୧,୨ = 1 ∶   xሬሬ⃗ ୧ ≈ xሬ⃗ ୨      
            0 :    xሬ⃗ ୧ ≉ xሬ⃗ ୨     ,    i , j = 1,2,3....... N          (1)         
where N is the number of considered states and xሬ⃗ ୧ ≈ xሬ⃗ ୨ 
means equality upto an error  ε. This ε is essential as systems 
often do not recur exactly to a formerly visited state but just 
approximately.  The matrix compares the states of a system 
at times i and j. If the states are similar, this is indicated by a 
one in the matrix, i.e. R୧,୨=1. If on the other hand the states 
are different, the corresponding entry in the matrix is R୧,୨=0. 
So the matrix tells us when similar states of the considered 
system occur. Thus representation of the recurrence matrix, 
gives the patterns of recurrences and allows us in studying 
dynamical systems and their trajectories. The “points” of the 
phase space represent possible states of the system. Let us 
say that the state of such a system at a fixed time t can be 
specified by d components. 
 
These parameters can be considered to form a vector  
xሬ⃗ (t) = (xଵ(t), xଶ(t), … . . , xୢ(t))୘                           (2)                                                                                                                                    
in the d-dimensional phase space of the system. 
 
2 Recurrence Plot 
As our focus is on recurrences of states of a dynamical 
system, we define now the tool which measures recurrences 
of a trajectory xሬ⃗ ୧∈Rୢ in phase space: the recurrence plot, 
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Eq.(3.1) [1]. The recurrence plot efficiently visualises 
recurrences of the states of the dynamical system and can be 
expressed by the matrix, 
                       
R୧,୨(∈)= Θ൫∈ −∥xሬ⃗ ୧ − xሬ⃗ ୨∥൯    ,   i , j = 1,2,3,.........,N.     (3)         
 
where N is the number of measured points  xሬ⃗ ୧,  ∈ is the 
threshold distance, Θ(.) the Heaviside function (i.e. Θ(x) =0  
if  x<0  and  Θ(x) = 1 otherwise), and ∥.∥  is a norm. For ∈ -
recurrent states i.e. for states which are in ∈ neighbourhood 
we introduce the following notation: 
 
       xሬ⃗ ୧ ≈ xሬ⃗ ୨    <==>   R୧,୨ ≡ 1                       (4) 
 
The RP is obtained by plotting the recurrence matrix, and 
using different colours for its binary entries, e.g., plotting a 
black dot at the coordinates (i,j), if R୧,୨ ≡ 1 and a white dot, 
if R୧,୨ ≡ 0. Both axes of the RP are time axes. Since 
R୧,୨ ≡ 1 ∣୧ୀଵ୒  by  definition, the RP has always a black main 
diagonal line which is called the Line of Identity (LOI). In 
order to compute an RP, an appropriate norm has to be 
chosen. The most frequently used norms are the Lଵ-norm, 
the Lଶ-norm (Euclidean norm) and the L∞-norm (Maximum 
or Supremum norm). To compute RPs, the L∞-norm is often 
applied, because it is computationally faster and allows us to 
study some features in RPs analytically. 
 
3 Cross Recurrence Plot 
The CRP is a bivariate extension of the RP and was used to 
analyse the dependencies between two different systems by 
comparing their states [2,3]. It can be considered as a 
generalisation of the linear cross-correlation function. 
Suppose we have two dynamical systems, each one 
represented by the trajectories  xሬ⃗ ୧ and yሬ⃗ ୨ in a d-dimensional 
phase space. The corresponding cross recurrence matrix is 
defined by,  
  
CR୧,୨

୶,ሬሬ⃗ ୷ሬሬ⃗ (∈)= Θ൫∈ −∥xሬ⃗ ୧ − yሬ⃗ ୨∥൯  ,  i = 1,2,....,N  ;  j=1,2,....,M        
(5) 
where the length of the trajectories of  xሬ⃗  and yሬ⃗  is not 
required to be identical, and hence the matrix CR is not 
necessarily square. Both systems are represented in the same 
phase space, because a CRP searches for those times when a 
state of the first system recurs to one of the other system. 
This bivariate extension of the RP was introduced for the 
Cross Recurrence Quantification [2]. The concept of CRPs 
is also used to study interrelations between time series [4]. 
The lines which are diagonally oriented are of major 
interest. They represent segments on both trajectories, which 
run parallel for some time. A measure based on the lengths 
of such lines can be used to find nonlinear interrelations 
between two systems which cannot be detected by the 
common cross-correlation function [3]. Assuming two 
identical trajectories, the CRP coincides with the RP of one 
trajectory and contains the main black diagonal or LOI. If 
the values of the second trajectory are slightly modified, the 
LOI will become somewhat disrupted and is called LOS. 
However, if we do not modify the values but stretch or 
compress the second trajectory slightly, the LOS will still be 

continuous but not a straight line. This line can become 
bowed. 
 
4 Synchronization Analysis Using Recurrences 
Any two systems are said to be phase synchronized when 
their respective frequencies and phases are locked. Studies 
have been made about the chaotic phase synchronization 
(CPS) which has been mainly observed for coherent 
oscillators. But when dealing with non-coherent oscillators, 
it is unclear whether some phase synchronized state can be 
achieved. To treat this problem, we propose a method based 
on recurrences in phase space that allows us to quantify 
indirectly CPS, which even works in the case of noisy non-
coherent oscillators. 
Next we study about Generalized Synchronization (GS) and 
recurrences. Two systems x(t) and y(t) are said to be in GS 
when two close states in the phase space of x correspond to 
two close states in the phase space of y. Hence the 
neighbourhood identity in phase space is preserved. Since 
the recurrence matrix R୧,୨

(ε) is nothing else as a record of the 
neighbourhood of each point of the trajectory, we can 
conclude that two systems are in GS if their RPs are almost 
identical. Thus the GS between considered oscillators is 
estimated using the generalized synchronization and 
recurrences. In order to detect GS the indices JPR and SPR 
have been introduced.  
 
5. The Line of Synchronization in the CRP 
From the conventional Recurrence Plot, one always finds a 
main diagonal in the plot, because of the identity of the (i,i)-
states. The RP can be considered as a special case of the 
CRP, which usually does not have a main diagonal as the 
(i,i)-states are not identical. A CRP of the two corresponding 
time series will not contain a main diagonal. But if the sets 
of data are similar, a more or less continuous line in the CRP 
that is like a distorted main diagonal can occur. A CRP of a 
sine function with itself (i.e. this is the RP) contains a main 
diagonal. 
 
Now, we rescale the time axis of the second sine function in 
the following way: 
sin(φt) → sin(φt + a sin(ψt))                 (6)  
  
we will use the notion rescaling only in the mention of the 
rescaling of the time scale. The rescaling of the second sine 
function with different parameters φ results in a deformation 
of the main diagonal. The distorted line contains the 
information on the rescaling, which we will need in order to 
re-synchronize the two time series. Therefore, we call this 
distorted diagonal, LOS. 
 
The plot of a sine function and its corresponding CRP is as 
follows: 
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Fig. 1. Plot of a sine function sin(φt) 

 
Fig. 2. CRP between the two sine functions shown in fig. 

1. 
 
6. Result and Discussion: 
6.1 Phase Synchronization by Means of Recurrences 
Here we consider a different approach based on recurrences 
in phase space to detect and quantify CPS. The concept of 
recurrence in dynamical systems goes back to Poincare [5], 
when he proved that after a sufficiently long time interval, 
the trajectory of an isolated mechanical system will return 
arbitrarily close to each former point of its route. 
We define the recurrence of the trajectory of the dynamical 
system {xሬ⃗ ୧}୧ୀଵ୒  in the following way: we say that trajectory 
has returned at time t=j to the former state at t=i if  
 

R୧,୨
(ε)=Θ(ε―∥  xሬ⃗ ୧ ― xሬ⃗ ୨ ∥) = 1,         (7) 

 
where ε is a pre-defined threshold and Θ is a Heaviside 
function. Based on this definition it is straightforward to 
estimate the probability P(ε)(τ) that the system returns to a 
neighbourhood of a former point xሬ⃗ ୧ of the trajectory (the 
neighbourhood is defined as a box of size ε centered at xሬ⃗ ୧, as 
we use the maximum norm) after τ time steps. 
 

P෡(ε)(τ)= ଵ
୒ିτ

∑ Θ ( ε― ∥  xሬ⃗ ୧― xሬ⃗ ୧ାτ ∥ )୒ିτ
୧ୀଵ  = ଵ

୒ିτ
∑ R୧,୧ାτ

(ε)୒ିτ
୧ୀଵ          

(8) 
 

This function can be considered as a generalized 
autocorrelation function, as it also describes higher order 
correlations between the points of the trajectory in 
dependence on time delay τ. P෡(ε)(τ) is determined for a 
trajectory in phase space. Further it is possible to reconstruct 
the attractor by only considering the recurrences of single 
components of the system [6]. Because of this it is possible 
to estimate dynamical invariants of the system (e.g., 
entropies and dimensions) by means of recurrences in phase 
space, i.e. the recurrences of the system in phase space 
contain information about higher order dependencies within 
the components of the system. This method has been 
successfully applied to geophysical data [7]. For a periodic 
system in phase space, the probability of recurrence P(τ) is 
equal to 1 if τ is equal to a multiple of the time period T of 
the system, and 0 otherwise. 
 
6.2 Application of RP to EEG signals recorded during 
epileptic seizure: 
Since this new RP is sensitive towards variation in coupling 
so we can apply it on passive experiments, where we do not 
have direct control over coupling strength e.g. on EEG 
under epileptic seizure. 
  Two EEG signals are taken from different channels and a 
sliding window is applied as showing in Fig. 3 (c, d, e, f, g) t 
here are RP  of EEG at different moments. It is found that 
density of black dots is diminishing as we move towards 
seizure moments and eventually RP has very rare white 
black dots at the seizure activity in Fig. 3 (f, g). 

This is also shown through recurrence rate rr (t) 
and coupling index ρπ in next figures.  
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3h 

Fig. 3. (a, b) EEG signals, (c, d, e, f, g) corresponding 
RPMarkov’s with sliding window N=2000, delay=800, m=3, 

τ=4, and 3 (h) is plot for ρπ (t). 

 

 
Fig. 4. Recurrence Rate rr(t) for RPMarkov  

 
6.3 Order Recurrence plot of order patterns              

ORPM (i , j)= 1;      if πx (i) = πy(j)    else 0;  i , 
j=1….N     (9)  

 
6.7 Application of ORPM to EEG signals recorded during 
epileptic seizure: 

 
(a) 

 
 

 
(b) 

 
(c) 

Fig. 5. Application of ORPMarkov on different 
combination of EEG signals for detecting coupling. 

 
After checking the performance of ORPM over Rossler 
system with variation in coupling index. It is obvious that 
ORPM is able to detect the coupling strength we applied it on 
the EEG signal recorded under epileptic seizure as shown in 
Fig. 4.19 with different combination three different 
combinations of channels (a) channel 15 and 18, (b) channel 
1 and 10 and (c) channel 5 and 9 along with coupling index 
ρπ initially in normal condition ρπ is small and as the sliding 
window moves under the duration of epileptic seizure ρπ  
gradually increases in 5 a, b and c. Same analysis is done 
with other different combination and all are showing the 
same behaviour of ρπ for all combinations. It proves that 
inclusion of Markov property in defining order pattern 
according to Equation 5 is capable of detecting coupling in 
EEG signal and it demonstrate clear differences in 
uncoupled, weakly coupled and strongly coupled conditions. 
 
7. Conclusion: 
We can conclude that this method of order patterns based on 
Markov property can also be used over biomedical signals 
for finding short time dynamics and they can be more 
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accurate in diagnosis of pathological condition that can be 
detected from strength of interactions between recorded 
signals obtained from two structurally different systems like 
ECG and heart rate variability, breathing patterns and EMG 
or in between different EEG channels for the patients of 
Parkinson disease or to analyze sleep disorders by studying 
EEG during various sleep stages. 
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