
 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

Implementation of 32-Bit Fault Tolerance ALU
using VHDL for Checking bit up to 6 Bits.

Abstract- We present a fault tolerant Arithmetic and Logic Unit
(ALU) for increasing demand for digital transmission and
storage systems. This demand has been accelerated by the
rapid development and availability of VLSI technology and
digital processing. It is frequently the case that a digital system
must be fully reliable, as a single error may shutdown the
whole system, or cause unacceptable corruption of data, e.g. in
a bank account. In situations such as this error control must be
employed so that an error may be detected and afterwards
corrected. The simplest way of detecting a single error is a
parity checksum , which can be implemented using only
exclusive-or gates. But in some applications this method is
insufficient and a more sophisticated error control strategy
must be implemented. The simplest block codes are Hamming
codes. They are capable of correcting only one random error
and therefore are not practically useful, unless a simple error
control circuit is required. More sophisticated error correcting
codes are the Bose, Chaudhuri and Hocquenghem (BCH) codes
that are a generalisation of the Hamming codes for multiple-
error correction. In this thesis the subclass of binary, random
error correcting BCH codes is considered, hereafter called
BCH codes. BCH codes operate over finite fields or Galois
fields. The mathematical background concerning finite fields is
well specified and in recent years the hardware implementation
of finite fields has been extensively studied.

Keywords- A.L.U., BCH Code, Fault Tolerance, VHDL, Xilinx.

1. Introduction
An error is the change or the mismatching take place
between the data unit sent by transmitter and the data unit
received by the receiver e.g. 10101010 sent by sender
10101011 received by receiver. Here is an error of 1 bit.
Error control refers to mechanisms to detect and correct
errors that occur in the transmission of frame. The most
common techniques for error control are Error detection,
Positive acknowledgement Retransmission after time-out,
Negative acknowledgement and retransmission. These
mechanisms are also referred as automatic repeat request
(ARC). The basis of all error detection and correction in
hard disks is the inclusion of redundant information and
special hardware or software to use it. Each sector of data on
the hard disk contains 512 bytes, or 4,096 bits, of user data.
In addition to these bits, an additional number of bits are
added to each sector for the implementation of error
correcting code or ECC (sometimes also called error
correction code or error correcting circuits). These bits do
not contain data rather; they contain information about the
data that can be used to correct any problems encountered
trying to access the real data bits. There are different kinds
of techniques that can be used for decoding of codes. Either
soft decision decoding can be used or hard decision

decoding can be used depending on the requirement and on
the performance a criterion that is required to be met.

Fig. 1. Classification of Error Correcting Codes

A. BCH Codes:
BCH (Bose Chaudhary Hocquenghem) codes are cyclic
error correcting codes which are made up with the help of
finite fields. It is possible to design BCH codes that can
correct multiple bit errors. It is possible to construct BCH
codes with predictable distance properties BCH codes can
be decoded via an algebraic method called as syndrome
decoding. BCH decoder uses low power electronic
hardware. In BCH codes there is an ability to control
number of symbols that can be corrected. One important
attribute of BCH codes is that they offer error correction at
high code rate, which make them very attractive for optical
communication applications. This BCH code is used in
control channels for cellular TDMA.

B. Low Density Parity Check codes(LDPC):
LDPC codes are highly efficient linear block codes. They
provide performance very close to channel capacity defined
by Shannon’s bound. Generally the implementations of
BCH codes use soft decision decoding algorithm. LDPC
codes are suitable for parallel implementation.LDPC code is
defined by a sparse parity check matrix H, which can be
modelled as a Tanner graph where N bit nodes and M (= N-
K) check nodes are connected by edges. The bit nodes
(check nodes) in a Tanner graph are mapped to columns
(rows) of matrix H. A column and a row of element 1 in
matrix H are connected by an edge in a Tanner graph.LDPC
codes are now used in many recent high-speed
communication standard such as DVB-S2 (Digital video
broadcasting), WiMAX (IEEE 802.16e standard for
microwave communications), High-Speed Wireless LAN
(IEEE 802.11n), 10GBase-T Ethernet (802.3) and

Shinjini Yadav
Electronics Engg. Department
KNIT, Sultanpur, India
yadavshinjini@gmail.com

A. K. Singh
Electronics Engg. Department
KNIT, Sultanpur, India

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

G.hn/G.9960 (ITU-T) Standard for networking over power
lines, phone lines and coaxial cable).

C. Turbo Codes:
Turbo codes are Block codes and uses soft decision
decoding algorithm for its implementation. It is a
combination of convolution codes and an interleaver. Turbo
codes are high performance forward error correction codes.
Turbo codes perform within a fraction of decibel of channel
capacity defined by Shannon’s limit. Turbo codes are used
in 3G mobile communications and deep space satellite
communications. These are also used where designers seek
to achieve reliable information transfer over bandwidth- or
latency-constrained communication links in the presence of
data-corrupting noise. Turbo codes are nowadays competing
with LDPC codes, which provide similar performance.
Turbo coding such as block turbo coding and convolution
turbo coding are used in IEEE 802.16 (WiMAX), a wireless
metropolitan network standard.

D. Reed Solomon Codes:
Reed Solomon (RS) codes are non-binary cyclic error
correcting codes. It can detect and correct multiple random
symbol errors. By adding t check symbols to the data, an RS
code can detect any combination of up to t erroneous
symbols, or correct up to t/2 symbols. In RS coding, source
symbols are considered as coefficients of a polynomial p(x)
over a field. The original idea was to create n code symbols
from k source symbols by oversampling p(x) at n > k
distinct points, transmit the sampled points, and use
interpolation techniques at the receiver to recover the
original message. RS codes are viewed as cyclic BCH
codes. Reed–Solomon codes have found applications in
deep-space communication to consumer electronics. They
are used in consumer electronics such as CDs, DVDs, Blu-
ray Discs, in data transmission technologies such as DSL ,
DVB and ATSC, and in computer applications such as
RAID 6 systems.

E. Triple Modular Redundancy:
In Triple modular redundancy or triple mode redundancy or
TMR, three systems perform a process and that result is
processed by a voting system to produce a single output. If
any one of the three systems fails, the other two systems can
correct and remove the fault. If the voter fails then the
complete system will fail. However, in a good TMR system
the voter is much more reliable than the other TMR
components. It is fault-tolerant form of redundancy. One
Error Correcting memory uses triple modular redundancy
hardware rather than the Hamming because triple modular
redundancy hardware is faster than Hamming error
correction hardware. Space satellite systems often use TMR,
although satellite RAM usually uses Hamming error
correction. Some communication systems use N-modular
redundancy as form of forward error correction.

F. Hamming Codes:
Hamming codes are linear error correcting codes that can
detect 2-bit error and can correct up to 1-bit error. These
codes can achieve the highest possible rate for codes with
their block length and minimum distance 3. These codes are

binary linear codes. For each integer r≥2, there is a code
with block length n=2^r-1 and message length k=2^r-r-1
Hence the rate of Hamming codes is R=k/n which is highest
possible for codes with distance 3 and block length 2^r-1.
They are widely used in computer memory (ECC memory).
One can also use an extended Hamming code with one extra
parity bit. Extended Hamming codes achieve a distance of 4,
which allows the decoder to distinguish between the
situation in which at most one bit error occurred and the
situation in which two bit errors occurred. In this sense,
extended Hamming codes are single-error correcting and
double-error detecting, and often referred to as SECDED.

G. Hadamard Codes:
Hadamard codes are used for error correction when
messages are transmitted over channels corrupted with
noise. These codes are also called as Walsh codes and
Walsh Hadamard codes. These codes map a message
consisting of k bits to a codeword of 2^k-1 bits; it is able to
detect 2^(k-2)-1 errors and to correct 2^(k-3)-1errors. In
standard coding theory notation for the Hadamard code is a
[2^(k-1),k,2^(k-2)]. It is a code Over a binary alphabet, have
block length 2^(k-1) message length (or dimension) k, and
minimum distance 2^(k-2). For large k, the block length is
very large, but many errors can be corrected. The Hadamard
code of message length k is the same as the first order Reed–
Muller code RM (1, k−1).

2. Related Work
In fault tolerance, we will discuss prior work focusing on
information, hardware and time redundancy. First, we will
review the work that has been done in the area of fault
tolerance. Then we will discuss the different fault-tolerant
mechanisms. Later we will discuss the work done in
diagnosis and reconfiguration of Arithmetic and Logic Units
(ALUs).
Error correction plays a major role in communication and
storage systems to increase the transmission reliability and
achieve a better error correction performance with less
signal power. BCH codes are generally used because of their
ability to correct multiple bits error and have been adopted
by many communication standards (wired, wireless and
broadcasting) and applications. BCH codes are cyclic codes
that are designed on the basis of Galois fields. New
advances in the field of digital transmission systems and
microelectronic technology have recently led to the
discovery or refinement of more and more powerful channel
coding techniques based on iterative decoding, which
achieve performance near to the Shannon limit of channel
capacity, which leads to the generation of BCH codes. There
has been much research on BCH decoders and their FPGA
implementation which represents many difficulties to
achieve parameters such as reduced interconnect
complexities, smaller die areas, lower power dissipation, and
design reconfigurability to support multiple code lengths
and code rates. Many decoder architectures have been
proposed so far, including fully parallel implementation,
partially parallel implementation and completely serial
implementation. The above techniques have their own
advantages and disadvantages. There is always a trade-off
between area requirement and throughput. In order to

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

increase if FPGA implementation uses parallel architecture
then area will be increased and if serial architecture is used
to maintain area utilization then speed will be decreased.
Thus some technique must be employed that will be able to
optimize both.
Systems that tolerate failures have been of interest since the
1940's when computational engines were constructed from
relays. Fault detection provides no tolerance to faults, but
gives warning when they occur [4]. If the dominant form of
faults is transient/intermittent, recovery can be initiated by a
retry invoked from a previous checkpoint in the system at
whose time the system state was known to be good. Design
errors, whether in hardware or software, are those caused by
improper translation of a concept into an operational
realization [2]. The three major axes of the space of fault-
tolerant designs are: system application, system structure,
and fault-tolerant technique employed [6]. The most
stringent requirement for fault tolerance is in real-time
control systems, where faulty computation could jeopardize
human life or have high economic impact [5]. Computations
must not only be correct, but recovery time from faults must
be minimized. Specially designed hardware is employed
with concurrent error detection so that incorrect data never
leaves the faulty module [3]. Major error-detection
techniques include duplication (frequently used for random
logic) and error detecting codes. Recovery techniques can
restore enough of the system state to allow a process
execution to restart without loss of acquired information.
There are two basic approaches: forward and backward
recovery.
Forward recovery attempts to restore the system by finding a
new state from which the system can continue operation.
Backward recovery attempts to recover the system by rolling
back the system to a previously saved state, assuming that
the fault manifested itself after the saved state. Forward
error recovery, which produces correct results through
continuation of normal processing, is usually highly
application-dependent [3]. Backward recovery techniques
require some redundant process and state information to be
recorded as computations progress. Error detection and
correction codes have proven very effective for regular logic
such as memories and memory chips have built-in support
for error detection and correcting codes [7]. With the ever-
increasing dominance of transient and intermittent failures,
retry mechanisms will be built into all levels of the system
as the major error-recovery mechanism [4]. Fault tolerance
is no longer an exotic engineering discipline; rather, it is
becoming as fundamental to computer design as logic
synthesis. Designs will be compared and contrasted not only
by their cost, power consumption, and performance but also
by their reliability and ability to tolerate failures [1].

Several SEU mitigation techniques have been proposed in
the past years in order to avoid transient faults in digital
circuits, including those implemented in programmable
logic. A SEU immune circuit may be accomplished through
a variety of mitigation techniques based on redundancy.
Redundancy is provided by extra components (hardware
redundancy), by extra execution time or different time of
storage (time redundancy), or by a combination of both.
Each technique has some advantages and drawbacks, and

there is always a compromise between area, performance,
power and fault tolerance efficiency. In the case of ALU-
based FPGAs, the problem of finding an efficient technique
in terms of area, performance and power is very challenging,
because of the high complexity of the architecture. As
previously mentioned, when an upset occurs in the user’s
combinational logic implemented in a FPGA, it provokes a
very peculiar effect, not commonly seen in ASICs. The SEU
behavior is characterized as a transient effect, followed by a
permanent effect. The upset can affect either the
combinational logic or the routing. The consequences of this
type of effect, a transient followed by a permanent fault,
cannot be handled by the standard fault tolerant solutions
used in ASICs, such as Error Detection and Correction
Codes (Hamming code) or the standard TMR with a single
voter, because a permanent fault in the encoder or decoder
logic or in the
voter would invalidate the technique provoking an error in
the circuit. Special techniques should be developed for
FPGAs to cope with this type of effect.

3. Proposed Work:
An Arithmetic-Logic Unit (ALU) is the part of the Central
Processing Unit (CPU) that carries out arithmetic and logic
operations on the operands in computer instruction words. In
some processors, the ALU is divided into two units, an
arithmetic unit (AU) and a logic unit (LU). Typically, the
ALU has direct input and output access to the processor
controller, main memory (random access memory or RAM
in a personal computer), and input/output devices. Inputs
and outputs flow along an electronic path that is called a
bus. The input consists of an instruction word that contains
an operation code (sometimes called an "OPCODE"), one or
more operands and sometimes a format code. The operation
code tells the ALU what operation to perform and the
operands are used in the operation. The output consists of a
result that is placed in a storage register and settings that
indicate whether the operation was performed successfully.
In general, the ALU includes storage places for input
operands (operands that are being added), the accumulated
result and shifted results. The flow of bits and the operations
performed on them in the subunits of the ALU is controlled
by gated circuits. The gates in these circuits are controlled
by a sequence logic unit that uses a particular algorithm or
sequence for each operation code. In the arithmetic unit,
multiplication and division are done by a series of adding or
subtracting and shifting operations. There are several ways
to represent negative numbers. In the logic unit, one of 16
possible logic operations can be performed, such as
comparing two operands and identifying where bits do not
match. The design of the ALU is obviously a critical part of
the processor and new approaches to speeding up instruction
handling are continually being developed. In computing, an
ALU is a digital circuit that performs arithmetic and logic
operations. An ALU must process numbers using the same
format as the rest of the digital circuit. For modern
processors, that almost always is the two's complement
binary number representation. Early computers used a wide
variety of number systems, including one's complement,
sign-magnitude format, and even true decimal systems, with
ten tubes per digit. ALUs for each one of these numeric

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

systems had different designs, and that influenced the
current preference for two's complement notation, as this is
the representation that makes it easier for the ALUs to add
and subtract. Most of a processor's operations are performed
by one or more ALUs. An ALU loads data from input
registers, executes the operation and stores the result into
output registers. ALUs can perform the following
operations:
1. Integer arithmetic operations (addition, subtraction and
multiplication)
2. Bitwise logic operations (AND, NOT, OR, XOR), and
3. Bit-shifting operations (shifting a word by a specified
number of bits to the left or right).

We implemented a Sklansky tree adder [17] for addition and
subtraction instead of Brent-Kung [13] or Kogge-Stone [15]
trees. We chose it because it has the fewest wires and
minimum logic depth. The Sklansky adder topology is the
most energy efficient compared to the other two adders [16]
in the 90nm technology. We implemented Booth-encoding
[12] to reduce the partial products of the multiplier and for
adding the partial products we used a Wallace Tree [18]. We
used the radix-4 Booth encoding scheme for the ALU. For
the Carry Propagation Adder (CPA) at the final stage of the
Wallace tree, we reused the Sklansky adder designed for
addition.

3.1 Fault Tolerant methods:
In this section the similar works in the literature that has
been applied in the ALU to keep it safe from logic and
arithmetic operation using Residue code are presented. The
other works which are considered here are triple modular
redundancy (TMR) scheme with single voting, and with
triplicated voting. Then we have compared these methods
with our tasks. Finally, Fault Tolerant methods for 32-bit
ALU in terms of overhead hardware are compared.

3.3.1 Residue code:
To design the 32-bit Fault Tolerant ALU (Arithmetic Logic
Unit), V.S. Veeravalli et al, has used the residue code and
duplication of hardware mechanism in order to achieve a
less hardware overhead. In residue codes, data parts and
check parts are separated to be able to detect the errors. The
residue of X modulo A is denoted by |X|A. There exists the
following equation.

The structure of such scheme is depicted in Fig. 2. V. S.
Veeravalli et al has been presented implementation of error
detection mechanism to detect error in ALU. Also for
Boolean operations of the ALU duplication of hardware has
been used to detect the error. Since the residue code can
only detect the error, they have to devise other spare ALU to
make error correction possible. In such technique, if one
error has occurred in ALU, then it should replace the
original ALU with the spare ALU. In such method it is
required to compute the remainder of both inputs of the
ALU.

Fig. 2. Arithmetic processor with residue checker.

Also they had to compute the remainder of the output of the
ALU. Consequently, after computing the remainders it is
required to compare whether they match. The main
drawback of residue code with A as a check modulus is that
it has the same undetectable fault magnitudes. For A=3, only
errors that modify the result by such multiple of 3 will go
undetected and therefore single bit faults are always
detectable [23]. The hardware overhead composed by
residue codes concerning the ALU is around 45.596%. The
hardware overhead of duplication for Boolean unit is 3%.
So, the extra ALU has been increased the hardware
overhead by 100%. Therefore the total hardware overhead
for the 32-bit ALU is 148.596%. The other main drawback
for duplication of hardware mechanism is that it uses two
copies of the same hardware. It has more than 100%
hardware overhead. In such procedure the input is processed
in both modules and is compared with the output results. If
there is a mismatch or an error in the circuit, it will be
informed by the comparator; moreover such scheme can
only detect errors and cannot correct errors.

3.1.2 Triple modular redundancy with single voting:
The other work in such field is designing a 32-bit ALU
using Triple Modular Redundancy (TMR) with single
voting. In fact, it uses hardware redundancy technique in the
combinational logic and allows voting the correct output
value in the presence of faults. The majority voter scheme is
depicted in Fig. 3.

Fig. 3. Triple Modular Redundancy scheme.

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

The concept of TMR is devised firstly by Von Neumann.
The circle Voter in Fig. 3 is called a majority organ by Von
Neuman. In TMR technique the logic is triplicated in the
output, the voters identify the correct value. The entire
scheme is shown in Fig. 4.

Fig. 3.8: Majority Voter Schematic.

In this technique all registers should be tripled to protect
circuits against radiation effects. The voter must be added in
the output. The error will not be reflected in the output of
voter if, one component fails. The hardware overhead in
TMR is the addition of the two registers of the same size.
Moreover there exist n voters for each n-bit register. So,
such method is also need extra two spare 32-bit ALU and it
is give rise to 200% hardware. Hentschke et al , have shown
that Triple modular redundancy scheme is more effective
according to area and performance to preserve registers and
small memory structure. Nevertheless Hamming code is
more suitable to preserve large register files and memories.

3.1.3 Triple modular redundancy with triplicated voting:
The other mechanism to fault tolerant 32-bit ALU is called
Triple modular redundancy with tripled voting. Since in
such scheme the reliability of the voter circuit
proportionately is increased, it is currently utilized in
industry. The schematic of this mechanism are shown in fig.
3.4.

Fig. 4. Triplicate Modular Redundancy with Tripled

Voting.

4. Result and discussion:
We worked on 32 bit fault tolerant ALU that is our ALU can
correct up to 6 bits of error at any location of 63 bits (error
Signal). We divide our work in three part first one is
encoder, second is decoder and the third is our ALU. This
fig 5 shows the result of BCH encoder – with rout signal

which shows the encoded output which will go into the
decoder circuit with the information and Error (manual)
signal(s) if any. Here we have kept serial incoming data i.e.
Bit by Bit and occurrence of each clock pulse the serial data
out will receive as the final data out . Here we see that it is
taking 63 clock cycles to complete one calculation. This
information will go further into decoder circuit .

Fig 5. BCH Encoder

Fig 6. shows the decoder part. In this part we have given
serial data input and we get the correct output whenever
vdout signal is got asserted the serial output data is on dout
line. This dout output will be work as a real ALU input (a or
b) on which different operations of ALU will be performed
the Fig 4.2 we easily showing that the yellow marker our
serial data output during the our valid out (Vdout) signal got
high. Each cycle represent the single bit.

Fig 6. BCH Decoder

Till now we had shown that our serial data had been coming
from the dout signal in decoder circuit. Now in this part we

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

are combining our encoder and decoder circuits in a single
part named as codec In this fig 4.3 we have generated the
parallel data input along with manual error signal upto 6 bits
and the circuit will correct the error and come out with the
actual data we had given. In this fig 7 the two markers has
been kept in White & Blue colour showing the Error
Signals.

Fig. 7. BCH CODEC with error input

In this fig 8 we have introduced the error of more than 6 bits
and we don't get desired output. In this fig 8 we have given
input of Din: abcdef (Hex), Error: 0000000011111111
(Hex), Dout: EF89ab99(Hex).

Fig. 8. BCH CODEC with more than 6 bit error input

In this fig 9 we have shown a complete simulation for 32 bit
ALU operation. We have given two 32 bit inputs a and b as
well as we give 0,6 and 7 bit error for both signal so in this
case we can show that our we are working for maximum 6
bit of error for each signal that is automatically resolved. We
have taken 3 bit opcode "000" that means it will ADD both
inputs A and B. In this case we have taken value of a is
"11111111" in hexadecimal format and value of b is
"22222222" in hexadecimal format. We will get the output
"33333333". That is a desired output for 0 and 6 Bit error
Bits as shown in fig. respectively with the first two
markers(Blue). The third marker shows the output
“37777777” for more than 6 bits of error.

Fig. 9. 32 bit ALU operation with 0,6 & 7 bit error.

5. Conclusion:
In this thesis Xilinx ISE tool used for the design of 32 bit
fault tolerant ALU using BCH codecs has been described.
This system - the BCH codec synthesis (BCS) system -
generates the gate level description of any BCH codec for 6
bit self correcting circuits. BCH codes operate over finite
fields of the form GF(2m). the basic theory of finite fields
has been presented and the most important field arithmetic
operators have been reviewed. In addition, a new approach
has been described for generating the sum of products. This
approach utilises polynomial basis multipliers and therefore
requires a different serial-in parallel-out interface but in
exchange offers significant hardware savings. As a result of
using this sum of products circuit, t*m registers have been
saved as well as a number of additional XOR gates.
Furthermore, to generate products of the form p = abc where
p, a, b, c GF(2m) in the least possible time, a new
architecture for a Dual-Polynomial Basis Multiplier has also
been developed, which almost halves the calculation time
with no significant increase in hardware requirements. As
has been shown that these two architectures can be easily
combined to form even more powerful circuits with both

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 10, Issue 2, July 2016
All Rights Reserved © 2016 IJRDASE

low hardware requirements and high throughputs for use in
the BMA. In addition, a simple way of constructing bit-
parallel polynomial basis multipliers has been presented, and
a circuit for raising finite field elements to the third power
developed.

References:
[1] Fernanda Lima et. al, " Reducing Pin and Area Overhead
in Fault-Tolerant FPGA based Designs ", FPGA’03,
February 23-25, 2003, Monterey, California, USA.
COPYRIGHT 2003 ACM 1-58113-651-X/03/0002… $5.00
[2] Fernanda Lima Kastensmidt et. al. "Designing and
Testing Fault-Tolerant Techniques for SRAM-based
FPGAs" CF’04, April 14–16, 2004, Ischia, Italy. Copyright
2004 ACM 1-58113-741-9/04/0004.
[3] Jason a. cheathame et. al., " A Survey of Fault Tolerant
Methodologies for FPGAs" ACM Transactions on Design
Automation of Electronic Systems, Vol. 11, No. 2, April
2006, Pages 501–533.
[4] Cristiana Bolchini et. al., " TMR and Partial Dynamic
Reconfiguration to mitigate SEU faults in FPGAs"
[5] Edward Stott et. al., " Fault Tolerant Methods For
Reliability In FPGAs" 978-1-4244-1961-6/08/$25.00 ©2008
IEEE.
[6] A. Vahid Khorasani et. al., "Analysis of 32-bit Fault
Tolerant ALU Methods" 2010.
[7] Martin Straka et.al., " Fault Tolerant Structure for
SRAM-based FPGA via Partial Dynamic Reconfiguration"
2010.
[8] Federico Baronti et.al., " Design and Verification of
Hardware Building Blocks for High-Speed and Fault-
Tolerant In-Vehicle Networks" IEEE transactions on
industrial electronics, vol. 58, no. 3, march 2011.
[9] Vahid Khorasani et.al., " Analyzing Area Penalty of 32-
bit Fault Tolerant ALU Using BCH Code" 2011 14th
Euromicro Conference on Digital System Design.
[10] Mahadevaswamy V P et.al., " Implementation of Fault
Tolerant Method Using BCH Code on FPGA" International
Journal of Soft Computing and Engineering (IJSCE) ISSN:
2231-2307, Volume-2, Issue-4, September 2012
[11] D. A. Anderson. Design of Self-Checking Digital
Networks Using Coding Techniques. Research Report #
527, Univ. of Illinois, Urbana Champaign, Coordinated
Science Lab., September 1971.
[12] A. Booth. A Signed Binary Multiplication Technique.
Quarterly J. of Me- chanics and Applied Mathematics,
4(2):236{240, June 1951.
[13] R. T. Brent and H. T. Kung. A Regular Layout for
Parallel Adders. IEEE Trans. on Computers, C-
31(3):260{264, March 1982.
[14] L. Dadda. Some Schemes for Parallel Multipliers. Alta
Frequenza, 34(5):349{ 356, May 1965.
[15] P. M. Kogge and H. S. Stone. A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations. IEEE Trans. on Computers, C-22(8):786{792,
August 1973.
[16] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R.
Ananthraman. Robust Energy-Efficient Adder Topologies.
In ARITH '07: Proceedings of the 18th IEEE Symposium on
Computer Arithmetic, pages 16{28, Washington, DC, USA,
June 2007. IEEE Computer Society.

[17] J. Sklansky. Conditional-Sum Addition Logic. IRE
Trans. on Electronic Computers, EC-9(2):226{231, June
1960.

