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Implementation of 32-Bit Fault Tolerance ALU 
using VHDL for Checking bit up to 6 Bits. 

 
 
 

Abstract- We present a fault tolerant Arithmetic and Logic Unit 
(ALU) for increasing demand for digital transmission and 
storage systems. This demand has been accelerated by the 
rapid development and availability of VLSI technology and 
digital processing.  It is frequently the case that a digital system 
must be fully reliable, as a single error may shutdown the 
whole system, or cause unacceptable corruption of data, e.g. in 
a bank account. In situations such as this error control must be 
employed so that an error may be detected and afterwards 
corrected. The simplest way of detecting a single error is a 
parity checksum , which can be implemented using only 
exclusive-or gates. But in some applications this method is 
insufficient and a more sophisticated error control strategy 
must be implemented. The simplest block codes are Hamming 
codes. They are capable of correcting only one random error 
and therefore are not practically useful, unless a simple error 
control circuit is required. More sophisticated error correcting 
codes are the Bose, Chaudhuri and Hocquenghem (BCH) codes 
that are a generalisation of the Hamming codes for multiple-
error correction. In this thesis the subclass of binary, random 
error correcting BCH codes is considered, hereafter called 
BCH codes. BCH codes operate over finite fields or Galois 
fields. The mathematical background concerning finite fields is 
well specified and in recent years the hardware implementation 
of finite fields has been extensively studied. 
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1. Introduction 
An error is the change or the mismatching take place 
between the data unit sent by transmitter and the data unit 
received by the receiver e.g. 10101010 sent by sender 
10101011 received by receiver. Here is an error of 1 bit. 
Error control refers to mechanisms to detect and correct 
errors that occur in the transmission of frame. The most 
common techniques for error control are Error detection, 
Positive acknowledgement Retransmission after time-out, 
Negative acknowledgement and retransmission. These 
mechanisms are also referred as automatic repeat request 
(ARC). The basis of all error detection and correction in 
hard disks is the inclusion of redundant information and 
special hardware or software to use it. Each sector of data on 
the hard disk contains 512 bytes, or 4,096 bits, of user data. 
In addition to these bits, an additional number of bits are 
added to each sector for the implementation of error 
correcting code or ECC (sometimes also called error 
correction code or error correcting circuits). These bits do 
not contain data rather; they contain information about the 
data that can be used to correct any problems encountered 
trying to access the real data bits. There are different kinds 
of techniques that can be used for decoding of codes. Either   
soft decision decoding can be used or hard decision 

decoding can be used depending on the requirement and on 
the performance a criterion that is required to be met. 

 
 

Fig. 1. Classification of Error Correcting Codes 
 
A. BCH Codes: 
BCH (Bose Chaudhary Hocquenghem) codes are cyclic 
error correcting codes which are made up with the help of 
finite fields. It is possible to design BCH codes that can 
correct multiple bit errors. It is possible to construct BCH 
codes with predictable distance properties BCH codes can 
be decoded via an algebraic method called as syndrome 
decoding. BCH decoder uses low power electronic 
hardware. In BCH codes there is an ability to control 
number of symbols that can be corrected. One important 
attribute of BCH codes is that they offer error correction at 
high code rate, which make them very attractive for optical 
communication applications. This BCH code is used in 
control channels for cellular TDMA. 
 
B. Low Density Parity Check codes(LDPC): 
LDPC codes are highly efficient linear block codes. They 
provide performance very close to channel capacity defined 
by Shannon’s bound. Generally the implementations of 
BCH codes use soft decision decoding algorithm. LDPC 
codes are suitable for parallel implementation.LDPC code is 
defined by a sparse parity check matrix H, which can be 
modelled as a Tanner graph where N bit nodes and M (= N-
K) check nodes are connected by edges. The bit nodes 
(check nodes) in a Tanner graph are mapped to columns 
(rows) of matrix H. A column and a row of element 1 in 
matrix H are connected by an edge in a Tanner graph.LDPC 
codes are now used in many recent high-speed 
communication standard such as DVB-S2 (Digital video 
broadcasting),  WiMAX (IEEE 802.16e standard for 
microwave communications), High-Speed Wireless LAN 
(IEEE 802.11n), 10GBase-T Ethernet (802.3) and 
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G.hn/G.9960 (ITU-T) Standard for networking over power 
lines, phone lines and coaxial cable).  
 
C. Turbo Codes: 
Turbo codes are Block codes and uses soft decision 
decoding algorithm for its implementation. It is a 
combination of convolution codes and an interleaver. Turbo 
codes are high performance forward error correction codes. 
Turbo codes perform within a fraction of decibel of channel 
capacity defined by Shannon’s limit. Turbo codes are used 
in 3G mobile communications and deep space satellite 
communications. These are also used where designers seek 
to achieve reliable information transfer over bandwidth- or 
latency-constrained communication links in the presence of 
data-corrupting noise. Turbo codes are nowadays competing 
with LDPC codes, which provide similar performance. 
Turbo coding such as block turbo coding and convolution 
turbo coding are used in IEEE 802.16 (WiMAX), a wireless 
metropolitan network standard. 
 
D. Reed Solomon Codes: 
Reed Solomon (RS) codes are non-binary cyclic error 
correcting codes. It can detect and correct multiple random 
symbol errors. By adding t check symbols to the data, an RS 
code can detect any combination of up to t erroneous 
symbols, or correct up to t/2 symbols. In RS coding, source 
symbols are considered as coefficients of a polynomial p(x) 
over a field. The original idea was to create n code symbols 
from k source symbols by oversampling p(x) at n > k 
distinct points, transmit the sampled points, and use 
interpolation techniques at the receiver to recover the 
original message. RS codes are viewed as cyclic BCH 
codes. Reed–Solomon codes have found applications in 
deep-space communication to consumer electronics. They 
are used in consumer electronics such as CDs, DVDs, Blu-
ray Discs, in data transmission technologies such as DSL , 
DVB and ATSC, and in computer applications such as 
RAID 6 systems. 
 
E. Triple Modular Redundancy: 
In Triple modular redundancy or triple mode redundancy or 
TMR, three systems perform a process and that result is 
processed by a voting system to produce a single output. If 
any one of the three systems fails, the other two systems can 
correct and remove the fault. If the voter fails then the 
complete system will fail. However, in a good TMR system 
the voter is much more reliable than the other TMR 
components. It is fault-tolerant form of redundancy. One 
Error Correcting memory uses triple modular redundancy 
hardware rather than the Hamming because triple modular 
redundancy hardware is faster than Hamming error 
correction hardware. Space satellite systems often use TMR, 
although satellite RAM usually uses Hamming error 
correction. Some communication systems use N-modular 
redundancy as form of forward error correction. 
 
F. Hamming Codes: 
Hamming codes are linear error correcting codes that can 
detect 2-bit error and can correct up to 1-bit error. These 
codes can achieve the highest possible rate for codes with 
their block length and minimum distance 3. These codes are 

binary linear codes. For each integer r≥2, there is a code 
with block length n=2^r-1 and message length k=2^r-r-1 
Hence the rate of Hamming codes is R=k/n which is highest 
possible for codes with distance 3 and block length 2^r-1. 
They are widely used in computer memory (ECC memory). 
One can also use an extended Hamming code with one extra 
parity bit. Extended Hamming codes achieve a distance of 4, 
which allows the decoder to distinguish between the 
situation in which at most one bit error occurred and the 
situation in which two bit errors occurred. In this sense, 
extended Hamming codes are single-error correcting and 
double-error detecting, and often referred to as SECDED. 
 
G. Hadamard Codes: 
Hadamard codes are used for error correction when 
messages are transmitted over channels corrupted with 
noise. These codes are also called as Walsh codes and 
Walsh Hadamard codes. These codes map a message 
consisting of k bits to a codeword of 2^k-1 bits; it is able to 
detect 2^(k-2)-1 errors and to correct 2^(k-3)-1errors. In 
standard coding theory notation for the Hadamard code is a 
[2^(k-1),k,2^(k-2)]. It is a code Over a binary alphabet, have 
block length 2^(k-1) message length (or dimension) k, and 
minimum distance 2^(k-2). For large k, the block length is 
very large, but many errors can be corrected. The Hadamard 
code of message length k is the same as the first order Reed–
Muller code RM (1, k−1). 
 
2. Related Work 
In fault tolerance, we will discuss prior work focusing on 
information, hardware and time redundancy. First, we will 
review the work that has been done in the area of fault 
tolerance. Then we will discuss the different fault-tolerant 
mechanisms. Later we will discuss the work done in 
diagnosis and reconfiguration of Arithmetic and Logic Units 
(ALUs). 
Error correction plays a major role in communication and 
storage systems to increase the transmission reliability and 
achieve a better error correction performance with less 
signal power. BCH codes are generally used because of their 
ability to correct multiple bits error and have been adopted 
by many communication standards (wired, wireless and 
broadcasting) and applications. BCH codes are cyclic codes 
that are designed on the basis of Galois fields. New 
advances in the field of digital transmission systems and 
microelectronic technology have recently led to the 
discovery or refinement of more and more powerful channel 
coding techniques based on iterative decoding, which 
achieve performance near to the Shannon limit of channel 
capacity, which leads to the generation of BCH codes. There 
has been much research on BCH decoders and their FPGA 
implementation which represents many difficulties to 
achieve parameters such as reduced interconnect 
complexities, smaller die areas, lower power dissipation, and 
design reconfigurability to support multiple code lengths 
and code rates. Many decoder architectures have been 
proposed so far, including fully parallel implementation, 
partially parallel implementation and completely serial 
implementation. The above techniques have their own 
advantages and disadvantages. There is always a trade-off 
between area requirement and throughput. In order to 
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increase if FPGA implementation uses parallel architecture 
then area will be increased and if serial architecture is used 
to maintain area utilization then speed will be decreased. 
Thus some technique must be employed that will be able to 
optimize both. 
Systems that tolerate failures have been of interest since the 
1940's when computational engines were constructed from 
relays. Fault detection provides no tolerance to faults, but 
gives warning when they occur [4]. If the dominant form of 
faults is transient/intermittent, recovery can be initiated by a 
retry invoked from a previous checkpoint in the system at 
whose time the system state was known to be good. Design 
errors, whether in hardware or software, are those caused by 
improper translation of a concept into an operational 
realization [2]. The three major axes of the space of fault-
tolerant designs are: system application, system structure, 
and fault-tolerant technique employed [6]. The most 
stringent requirement for fault tolerance is in real-time 
control systems, where faulty computation could jeopardize 
human life or have high economic impact [5]. Computations 
must not only be correct, but recovery time from faults must 
be minimized. Specially designed hardware is employed 
with concurrent error detection so that incorrect data never 
leaves the faulty module [3]. Major error-detection 
techniques include duplication (frequently used for random 
logic) and error detecting codes. Recovery techniques can 
restore enough of the system state to allow a process 
execution to restart without loss of acquired information. 
There are two basic approaches: forward and backward 
recovery. 
Forward recovery attempts to restore the system by finding a 
new state from which the system can continue operation. 
Backward recovery attempts to recover the system by rolling 
back the system to a previously saved state, assuming that 
the fault manifested itself after the saved state. Forward 
error recovery, which produces correct results through 
continuation of normal processing, is usually highly 
application-dependent [3]. Backward recovery techniques 
require some redundant process and state information to be 
recorded as computations progress. Error detection and 
correction codes have proven very effective for regular logic 
such as memories and memory chips have built-in support 
for error detection and correcting codes [7]. With the ever-
increasing dominance of transient and intermittent failures, 
retry mechanisms will be built into all levels of the system 
as the major error-recovery mechanism [4]. Fault tolerance 
is no longer an exotic engineering discipline; rather, it is 
becoming as fundamental to computer design as logic 
synthesis. Designs will be compared and contrasted not only 
by their cost, power consumption, and performance but also 
by their reliability and ability to tolerate failures [1].  
 
Several SEU mitigation techniques have been proposed in 
the past years in order to avoid transient faults in digital 
circuits, including those implemented in programmable 
logic. A SEU immune circuit may be accomplished through 
a variety of mitigation techniques based on redundancy. 
Redundancy is provided by extra components (hardware 
redundancy), by extra execution time or different time of 
storage (time redundancy), or by a combination of both. 
Each technique has some advantages and drawbacks, and 

there is always a compromise between area, performance, 
power and fault tolerance efficiency. In the case of ALU-
based FPGAs, the problem of finding an efficient technique 
in terms of area, performance and power is very challenging, 
because of the high complexity of the architecture. As 
previously mentioned, when an upset occurs in the user’s 
combinational logic implemented in a FPGA, it provokes a 
very peculiar effect, not commonly seen in ASICs. The SEU 
behavior is characterized as a transient effect, followed by a 
permanent effect. The upset can affect either the 
combinational logic or the routing. The consequences of this 
type of effect, a transient followed by a permanent fault, 
cannot be handled by the standard fault tolerant solutions 
used in ASICs, such as Error Detection and Correction 
Codes (Hamming code) or the standard TMR with a single 
voter, because a permanent fault in the encoder or decoder 
logic or in the 
voter would invalidate the technique provoking an error in 
the circuit. Special techniques should be developed for 
FPGAs to cope with this type of effect. 
 
3. Proposed Work: 
An Arithmetic-Logic Unit (ALU) is the part of the Central 
Processing Unit (CPU) that carries out arithmetic and logic 
operations on the operands in computer instruction words. In 
some processors, the ALU is divided into two units, an 
arithmetic unit (AU) and a logic unit (LU). Typically, the 
ALU has direct input and output access to the processor 
controller, main memory (random access memory or RAM 
in a personal computer), and input/output devices. Inputs 
and outputs flow along an electronic path that is called a 
bus. The input consists of an instruction word that contains 
an operation code (sometimes called an "OPCODE"), one or 
more operands and sometimes a format code. The operation 
code tells the ALU what operation to perform and the 
operands are used in the operation. The output consists of a 
result that is placed in a storage register and settings that 
indicate whether the operation was performed successfully. 
In general, the ALU includes storage places for input 
operands (operands that are being added), the accumulated 
result and shifted results. The flow of bits and the operations 
performed on them in the subunits of the ALU is controlled 
by gated circuits. The gates in these circuits are controlled 
by a sequence logic unit that uses a particular algorithm or 
sequence for each operation code. In the arithmetic unit, 
multiplication and division are done by a series of adding or 
subtracting and shifting operations. There are several ways 
to represent negative numbers. In the logic unit, one of 16 
possible logic operations can be performed, such as 
comparing two operands and identifying where bits do not 
match. The design of the ALU is obviously a critical part of 
the processor and new approaches to speeding up instruction 
handling are continually being developed. In computing, an 
ALU is a digital circuit that performs arithmetic and logic 
operations. An ALU must process numbers using the same 
format as the rest of the digital circuit. For modern 
processors, that almost always is the two's complement 
binary number representation. Early computers used a wide 
variety of number systems, including one's complement, 
sign-magnitude format, and even true decimal systems, with 
ten tubes per digit. ALUs for each one of these numeric 
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systems had different designs, and that influenced the 
current preference for two's complement notation, as this is 
the representation that makes it easier for the ALUs to add 
and subtract. Most of a processor's operations are performed 
by one or more ALUs. An ALU loads data from input 
registers, executes the operation and stores the result into 
output registers. ALUs can perform the following 
operations: 
1. Integer arithmetic operations (addition, subtraction and 
multiplication) 
2. Bitwise logic operations (AND, NOT, OR, XOR), and  
3. Bit-shifting operations (shifting a word by a specified 
number of bits to the left or right). 
 
We implemented a Sklansky tree adder [17] for addition and 
subtraction instead of Brent-Kung [13] or Kogge-Stone [15] 
trees. We chose it because it has the fewest wires and 
minimum logic depth. The Sklansky adder topology is the 
most energy efficient compared to the other two adders [16] 
in the 90nm technology. We implemented Booth-encoding 
[12] to reduce the partial products of the multiplier and for 
adding the partial products we used a Wallace Tree [18]. We 
used the radix-4 Booth encoding scheme for the ALU. For 
the Carry Propagation Adder (CPA) at the final stage of the 
Wallace tree, we reused the Sklansky adder designed for 
addition. 
 
3.1 Fault Tolerant methods: 
In this section the similar works in the literature that has 
been applied in the ALU to keep it safe from logic and 
arithmetic operation using Residue code are presented. The 
other works which are considered here are triple modular 
redundancy (TMR) scheme with single voting, and with 
triplicated voting. Then we have compared these methods 
with our tasks. Finally, Fault Tolerant methods for 32-bit 
ALU in terms of overhead hardware are compared. 
 
3.3.1 Residue code: 
To design the 32-bit Fault Tolerant ALU (Arithmetic Logic 
Unit), V.S. Veeravalli et al, has used the residue code and 
duplication of hardware mechanism in order to achieve a 
less hardware overhead. In residue codes, data parts and 
check parts are separated to be able to detect the errors. The 
residue of X modulo A is denoted by |X|A. There exists the 
following equation. 

 
The structure of such scheme is depicted in Fig. 2. V. S. 
Veeravalli et al has been presented implementation of error 
detection mechanism to detect error in ALU. Also for 
Boolean operations of the ALU duplication of hardware has 
been used to detect the error. Since the residue code can 
only detect the error, they have to devise other spare ALU to 
make error correction possible. In such technique, if one 
error has occurred in ALU, then it should replace the 
original ALU with the spare ALU. In such method it is 
required to compute the remainder of both inputs of the 
ALU. 

 
Fig. 2. Arithmetic processor with residue checker. 

 
Also they had to compute the remainder of the output of the 
ALU. Consequently, after computing the remainders it is 
required to compare whether they match. The main 
drawback of residue code with A as a check modulus is that 
it has the same undetectable fault magnitudes. For A=3, only 
errors that modify the result by such multiple of 3 will go 
undetected and therefore single bit faults are always 
detectable [23]. The hardware overhead composed by 
residue codes concerning the ALU is around 45.596%. The 
hardware overhead of duplication for Boolean unit is 3%. 
So, the extra ALU has been increased the hardware 
overhead by 100%. Therefore the total hardware overhead 
for the 32-bit ALU is 148.596%. The other main drawback 
for duplication of hardware mechanism is that it uses two 
copies of the same hardware. It has more than 100% 
hardware overhead. In such procedure the input is processed 
in both modules and is compared with the output results. If 
there is a mismatch or an error in the circuit, it will be 
informed by the comparator; moreover such scheme can 
only detect errors and cannot correct errors. 
 
3.1.2 Triple modular redundancy with single voting: 
The other work in such field is designing a 32-bit ALU 
using Triple Modular Redundancy (TMR) with single 
voting. In fact, it uses hardware redundancy technique in the 
combinational logic and allows voting the correct output 
value in the presence of faults. The majority voter scheme is 
depicted in Fig. 3. 
 

 
Fig. 3. Triple Modular Redundancy scheme. 
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The concept of TMR is devised firstly by Von Neumann. 
The circle Voter in Fig. 3 is called a majority organ by Von 
Neuman. In TMR technique the logic is triplicated in the 
output, the voters identify the correct value. The entire 
scheme is shown in Fig. 4. 

 
Fig. 3.8: Majority Voter Schematic. 

 
In this technique all registers should be tripled to protect 
circuits against radiation effects. The voter must be added in 
the output. The error will not be reflected in the output of 
voter if, one component fails. The hardware overhead in 
TMR is the addition of the two registers of the same size. 
Moreover there exist n voters for each n-bit register. So, 
such method is also need extra two spare 32-bit ALU and it 
is give rise to 200% hardware. Hentschke et al , have shown 
that Triple modular redundancy scheme is more effective 
according to area and performance to preserve registers and 
small memory structure. Nevertheless Hamming code is 
more suitable to preserve large register files and memories. 
 
3.1.3 Triple modular redundancy with triplicated voting: 
The other mechanism to fault tolerant 32-bit ALU is called 
Triple modular redundancy with tripled voting. Since in 
such scheme the reliability of the voter circuit 
proportionately is increased, it is currently utilized in 
industry. The schematic of this mechanism are shown in fig. 
3.4. 

 
Fig. 4. Triplicate Modular Redundancy with Tripled 

Voting. 
 
4. Result and discussion: 
We worked on 32 bit fault tolerant ALU that is our ALU can 
correct up to 6 bits of error at any location of 63 bits (error 
Signal). We divide our work in three part first one is 
encoder, second is decoder and the third is our ALU. This 
fig 5 shows the result of BCH encoder – with rout signal 

which shows the encoded output which will go into the 
decoder circuit with the information and Error (manual) 
signal(s) if any. Here we have kept serial incoming data i.e. 
Bit by Bit and occurrence of each clock pulse the serial data 
out will receive as the final data out . Here we see that it is 
taking 63 clock cycles to complete one calculation. This 
information will go further into decoder circuit . 

 

 
Fig 5. BCH Encoder 

 
Fig 6. shows the decoder part. In this part we have given 
serial data input and we get the correct output whenever 
vdout signal is got asserted the serial output data is on dout 
line. This dout output will be work as a real ALU input (a or 
b) on which different operations of ALU will be performed 
the Fig 4.2 we easily showing that the yellow marker our 
serial data output during the our valid out (Vdout) signal got 
high. Each cycle represent the single bit.  

 

 
Fig 6. BCH Decoder 

 
Till now we had shown that our serial data had been coming 
from the dout signal in decoder circuit. Now in this part we 
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are combining our encoder and decoder circuits in a single 
part named as codec In this fig 4.3 we have generated the 
parallel data input along with manual error signal upto 6 bits 
and the circuit will correct the error and come out with the 
actual data we had given. In this fig 7 the two markers has 
been kept in White & Blue colour showing the Error 
Signals. 

 

 
Fig. 7. BCH CODEC with error input 

 
In this fig 8 we have introduced the error of more than 6 bits 
and we don't get desired output. In this fig 8 we have given 
input of  Din: abcdef (Hex), Error: 0000000011111111 
(Hex), Dout: EF89ab99(Hex).  

 

 
Fig. 8. BCH CODEC with more than 6 bit error input 

 

 
In this fig 9 we have shown a complete simulation for 32 bit 
ALU operation. We have given two 32 bit inputs a and b as 
well as we give 0,6 and 7 bit error for both signal so in this 
case we can show that our we are working for maximum 6 
bit of error for each signal that is automatically resolved. We 
have taken 3 bit opcode "000" that means it will ADD both 
inputs A and B. In this case we have taken value of a is 
"11111111" in hexadecimal format and value of b is 
"22222222" in hexadecimal format. We will get the output 
"33333333". That is a desired output for 0 and 6 Bit error 
Bits as shown in fig. respectively with the first two 
markers(Blue). The third marker shows the output 
“37777777” for more than 6 bits of error. 

 

 
Fig. 9. 32 bit ALU operation with 0,6 & 7 bit error. 

 
 

 
5. Conclusion: 
In this thesis Xilinx ISE tool used  for the design of 32 bit 
fault tolerant ALU using BCH codecs has been described. 
This system - the BCH codec synthesis (BCS) system - 
generates the gate level description of any BCH codec for 6 
bit self correcting circuits. BCH codes operate over finite 
fields of the form GF(2m). the basic theory of finite fields 
has been presented and the most important field arithmetic 
operators have been reviewed. In addition, a new approach 
has been described for generating the sum of products. This 
approach utilises polynomial basis multipliers and therefore 
requires a different serial-in parallel-out interface but in 
exchange offers significant hardware savings. As a result of 
using this sum of products circuit, t*m registers have been 
saved as well as a number of additional XOR gates. 
Furthermore, to generate products of the form p = abc where 
p, a, b, c GF(2m) in the least possible time, a new 
architecture for a Dual-Polynomial Basis Multiplier has also 
been developed, which almost halves the calculation time 
with no significant increase in hardware requirements. As 
has been shown that these two architectures can be easily 
combined to form even more powerful circuits with both 
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low hardware requirements and high throughputs for use in 
the BMA. In addition, a simple way of constructing bit-
parallel polynomial basis multipliers has been presented, and 
a circuit for raising finite field elements to the third power 
developed. 
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