
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 11, Issue1, Oct 2016

An Automated Software Testing Approach using
Soft Computing Technique

Abstract--Today, testing is the most challenging and
dominating activity used by industry, therefore,
improvement in its effectiveness, both with respect to the
time and resources, is taken as a major factor by many
researchers. Using an automated Agent to support the
activities of human testers can reduce the actual cost of
the testing process and the related maintenance costs.
The present work is concerned with developing
prediction model using a soft computing techniques, viz.
Artificial Neural Network (ANN) as an automated agent
to evaluate and analyze software testing and quality
assessment. A logistic model to be used for testing and
evaluating the reliability of a software package has been
developed. Real software failure data has been used for
the comparison of the proposed logistic models. The
models predict the mean time between failure (MTBF) of
software packages. These models are fast, having quick
computation capability, been able to handle noisy data in
the current study under consideration. From the analysis
of the above results it is seen that the cumulative time
between failure prediction model developed using Feed
Forward Neural Network technique with back
propagation training algorithm has been able to perform
well. Also it is seen that it is better able to handle non
linearity in the data. From amongst the training
algorithms used, it was concluded that Levenberg-
Marquardt algorithm was the best one to achieve the
desired results

Keywords: Software Testing, Soft Computing Technique,
ANN, MTBF

1. Introduction
Almost 50% of the software production development cost is
expended in software testing. It consumes resources and
adds nothing to the product in terms of functionality.
Therefore, much effort has been spent in the development of
automatic software testing tools in order to significantly
reduce the cost of developing software[6]. A test data
generator is a tool, which supports and helps the program
tester to produce test data for software. Ideally, testing
software guarantees the absence of errors in the software,
but in reality it only reveals the presence of software errors
but never guarantees their absence. One objective of
software testing is to find errors and program structure
faults. However, a problem might be to decide when to stop
testing the software, e.g. if no errors are found or, how long
does one keep looking, if several errors are found. Software
testing is one of the main feasible methods to increase the

confidence of the programmers in the correctness and
reliability of software. Sometimes, programs that are poorly
tested perform correctly for months and even years before
some input sets reveal the presence of serious errors.
Incorrect software that is released to market without being
fully tested could result in customer dissatisfaction and
moreover it is vitally important for software in critical
applications that it is free of software faults which might
lead to heavy financial loss or even endanger lives.
Nowadays testing tools can automatically generate test data
that will satisfy certain criteria, such as branch testing, path
testing, etc. However, these tools have problems, when
complicated software is tested. A testing tool should be
general, robust and generate the right test data
corresponding to the testing criteria for use in the real world
of software testing. [1]
Artificial neural networks (ANNs) have been used in the
past to handle several aspects of software testing.
Experiments have been conducted to evaluate the
effectiveness of generating test cases capable of exposing
faults, to use principle components analysis to find faults in
a system, [6] to compare the capabilities of neural networks
to other fault-exposing techniques,[5] [7] and to find faults
in failure data. Hence prediction model is going to be
developed using software failure data. As failure
occurrences initiate the removal of faults, engineers reported
failure times and time between failures (TBF). Both have
been used to find the cummulative time between failures
(CTBF), which is then used to investigate the reliability
growth. Models that discuss the behaviour of CTBF are
called SRMs.

2. Literature Review
A review of the recent available literature on software
testing and quality prediction is presented. It covers
literature on software reliability models, reliability-relevant
software metrics, software defect prediction model, and
software quality prediction models and regression testing
models. Deepam Agarwal, (2004), found out that how well
the application under test conforms to its specifications. An
ROC Analysis was carried out to compare the approaches.
John E. Bentley, Wachovia Bank, Charlotte NC (2005),
According to them software testing is often less formal and
rigorous than it should, and reason for that is because the
project staff is unfamiliar with software testing
methodologies, approaches, and tools. They said that to
overcome it every SAS professional should be familiar with
basic software testing concepts, roles, and terminology.
Mrs.Agasta Adline, Ramachandran. M(2014) Predicting the

Shweta Srivastava
Computer Science and engineering
AIET, UPTU, Lucknow
pearlshweta710@gmail.com

Masood Ahmad
Computer Science and engineering
AIET, UPTU, Lucknow
ermasood@gmail.com

http://www.ijrdase.com
mailto:pearlshweta710@gmail.com
mailto:ermasood@gmail.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 11, Issue1, Oct 2016

fault-proneness of program modules when the fault labels
for modules are unavailable is a challenging task frequently
raised in the software industry. They attempted to predict the
fault–proneness of a program modules when fault labels for
modules are not present. Xiaoxing Yang, et.al. (2014) Used
the rank performance optimization technique for software
forecasting model development. For this rank to learning
approach was used. Rakesh Roshan, Rabins Porwal,
Chandra Mani Sharma, (2012), reviewed the recent
advancements in this field of Search Based Software
Testing. It covered the area of modern Software Testing.
They showed that search based software test has many
advantages including reduced efforts and improved
reliability over state-of-the-art approaches of Software
Testing. Animesh Kumar Rai, Rana Majumdar (2014),
analysed different types of software reliability models and
calculated failure rate of the software product. K.Venkata
Subba Reddy and Dr.B.Raveendra Babu (2013) we propose
a software reliability growth model, which relatively early in
the testing and debugging phase, provides accurate
parameters estimation, gives a very good failure behavior
prediction and enable software developers to predict when to
conclude testing, release the software and avoid over testing
in order to cut the cost during the development and the
maintenance of the software. Najia Saher, Dost Muhammad
Khan, Faisal Shahzad, Ayesha Karim, analysed two points,
that is at what point when ought to a test be automated and
when it ought to be manual.

3. Data Used
Failure data during system testing phase of various projects
collected at Bell Tele-phone Laboratories, Cyber Security
and Information Systems In-formation Analysis
Centre(CSIAC) by John D. Musa are considered.
Two numbers of application software testing data set for
demonstration of predictive performance and prediction
accuracy as shown in Table 1 has been considered. 70% of
each dataset is used for training the model and the rest
failure data is used for validating the model. The datasets are
downloaded from [12].

Table 1: Different software failure datasets used

Project Code
Project
Name

No. of
Failures

Development
Phases

SYS1

Real Time
Command &
Command
System 136

System Test
Operations

CSR1

Real Time
Command &
Command
System 397

System Test
Operations

Model Inputs and Structure
The modeling approach used to develop prediction model
along with details on input and output parameters is given in
this section. One among the foremost important steps within
the development of any prediction model is that the choice
of suitable input variables that may enable any classification
model to successfully produce the specified results. Sensible

understanding of the system into consideration is a crucial
prerequisite for successful application of data driven
approaches. Physical understanding of the method being
studied ends up in more sensible choice of the input
variables. Two types of prediction models have been
developed.

MODEL-I
One is the development of Cumulative Time Between
Failure (CTBF) prediction model, using FFNN algorithm,
with Cumulative number of Failures is taken as input and
Cumulative Time Between Failure (CTBF) is taken as
output variable. Here two different prediction models have
been developed using two different datasets. The
nomenclature used are as follows;

Table 2: Structure of Forecasting model both for Model-

I

Project
Code

Model
Nomenclature

Used

Input
Variables

Output
Variable

SYS1 M1-SYS1
No. of
Failures

CTBF

CSR1 M1-CSR1
No. of
Failures

CTBF

MODEL-II
Here interpretation has been carried out with no of failures
as a function of cumulative execution time. The
nomenclature used for different models are tabulated as
below.

Table 3: Structure of Forecasting model both for Model-

II

Project
Code

Model
Nomenclature

Used

Input
Variables

Output
Variable

SYS1 M2-SYS1

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

CSR1 M2-CSR1

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

Artificial Neural Network (ANN) Model Development
Here optimal network geometry was investigated, using trial
and error approach in an attempt to create more optimum
model. The number of hidden nodes was used to guide the
trial and error search approach for the optimal geometry [8];
however since an optimum model has been sought, only
models containing less than ten hidden nodes were
considered. Thus to minimise the number of networks that
required training and testing, ANN’s containing 1 to 10
nodes were considered in order to narrow down the search.
Once this range was determined, the trial and error approach
was repeated, with the number of hidden nodes increasing in
increment of one from minimum nodes onwards. Finally the
optimum nodes were found for the best developed network
and the networks on either side of the best developed
network were also tested. The models developed in this
research contained a single hidden layer with sigmoid

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 11, Issue1, Oct 2016

logistic activation function in the hidden nodes and output
node. The number of nodes in the input layer has been kept
fixed to three in all the six models considered [4][8]. The
learning rate was also initially kept to minimum and slowly
increased. Further in order to resolve the contradiction of
using slow or high learning rate (), a momentum () term
was introduced which provided a built in inertia allowing a
slow learning rate but faster learning. Thus various
permutation and combinations of both these factors were
used during the training process. The fixed period stops of
1000 cycles was used for training the network and the target
error was set to stop during training when the average error
reaches below 0.00999. Model parameter values for Back
Propagation Algorithm are given below in Table 4.

Table 4: Model parameter values for Back Propagation

Algorithm for both the models

Parameters Range of values
Training Function ‘trainlm’
Adaptation Learning
Function

‘learnGD’

Training mode Supervise
Gradient mode Jacobian
Performance Function MSE, SSE, MAE
Transfer Function For Hidden layer – tansigmoid

For output layer - linear
Number of Hidden nodes 2-5
Learning Rate () 0.1 to 0.9
Momemtum () 0.1 to 0.9
No. of epochs 100

Various network architectures were investigated in order to
determine the optimal MLP architecture (i.e. the lowest
mean square error and the optimum regression value) for the
given combination of sixteen input variables. Different
training algorithms were used with changes in the number of
neurons in the hidden layers. In addition, the effect of
transfer functions i.e. tangent sigmoid in the hidden layer
were also investigated.

4. Results and Discussions:
Given below in Table 5 are the error values for best
developed Model-I obtained using 1-5-1 network
configuration for both the datasets.

Table 5: Error Values for Model-I
Model No. MAE MSE SSE
M1-SYS1 0.0259 0.0013 0.0798
M1-CSR1 0.0191 0.000651 0.0976

Further Table 6 depicts the error values for best developed
Model-II obtained using 3-5-1 network configuration for
both the datasets.

Table 6: Error Values for Model-II
Model No. MAE MSE SSE
M2-SYS1 0.0202 0.000904 0.0542
M2-CSR1 0.0128 0.000293 0.0439

A comparative error plots of both the models using one and
three input variables is given in figures 1 to 3 below.

Fig. 1: SSE Plot for M-1 & M-2 models

Fig. 2: MAE Plot for M-1 & M-2 models

Fig. 3: MSE Plot for M-1 & M-2 models

Once the training process is complete and the results are
obtained, then their accuracy is ascertained by using the
testing data such that the predicted results are very close to
the observed ones.

Fig. 4: Regression Plot during training for M1-CSR1
Model

0
0.02
0.04
0.06
0.08

0.1

SYS1 CSR1

SSE MO…

0

0.01

0.02

0.03

SYS1 CSR1

MAE MO…

0

0.0005

0.001

0.0015

SYS1 CSR1

MSE MO…

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 11, Issue1, Oct 2016

Fig. 5: Regression Plot during training for M2-CSR1

Model

Fig. 6: Depicts the training of NN Model gauged by MSE
for N=5 using Levenberg-Marquardt training algorithm

with Gradient Descent with momentum as training
function for M1-CSR1 Model

Fig. 7: Depicts the training of NN Model gauged by MSE
for N=5 using Levenberg-Marquardt training algorithm

with Gradient Descent with momentum as training
function for for M2-CSR1 Model

Fig 4 and Fig. 5 shows the regression plot of training, testing
and validation results, whereas on the other hand fig 6 and
Fig. 7 demonstrates the plot of MSE for the bet developed
ANN model, i.e. 1-5-1 and 3-5-1, using Levenberg
Marquardt training algorithm for best developed M1-
CSR1and M2-CSR1 Models. For finding the accuracy of the
models during training, testing and validation stage, MSE
criteria is used. As seen from figures 4.6 and 4.7 the

performance in case of both the models improved even
when the network error was low. It was noticed that in case
of M1-CSR1 initially there was sharp fall in the nerwork
error and at epoch 5 errors for training, testing and
validation datasets got saturated and best validation result
was obtained as 0.00062959 at epoch number 82, while in
case of M2-CSR1 Model, though the initial fall in error
values was the same but around epoch 10 it got saturated
and the best validation result obtained was 0.0004124 at
epoch number 169. The network model 1-5-1 and 3-5-1,
which are the best can be considered as the best selection of
network topology. This topology is able to maintain the
number of layers, processing elements, generalization
characteristics. This also can be seen that the training time
elapsed has also been reduced due to less iteration required
as each time.

Fig. 8: Plot of Observed Vs. Predicted CTBF during
testing for M1-CSR1 Model

Fig. 9: Plot of Observed Vs. Predicted CTBF during
testing for M2-CSR1 Model

Figures 4.8 and 4.9, for Models M1-CSR1 and M2-CSR1
respectively shows the comparative analysis of the observed
and forecasted values of the Cummulative TBF, for testing
datasets, by the optimum model developed. This model
used LM training algorithm and GDM training function for
N=5. Here it is seen that the observed values and predicted
values are almost similar, except for few instances. This
demonstrates the validity of the ANN technique for the
development of a suitable prediction model. Hence the
inference drawn from the obtained results are that ANN
models have been able to achieve the desired output.
From detailed analysis of the two models M1 and M2, using
one and three input variables respectively, it can be seen that
in both the cases data CSR1 has resulted in the development
of better prediction model. Further, the comparative plots of
both the models with respect to MSE, SSE and MAE, as
given in Figs. 4.1 to 4.3, clearly demonstrates that the model

0

20000

40000

60000

80000

100000

120000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

Cu
m

m
. T

BF
 (s

ec
s.

)

No. of Failures

Testing Data Tst. …

0

50000

100000

150000

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

Cu
m

m
. M

TB
F

No. of Failures

Testing Data obs. …

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 11, Issue1, Oct 2016

developed with three input variables, considering only the
CTBF as data and output as one step ahead CTBF has
shown greater accuracy in terms of various performance
criteria, as against Model-I, which considers number of
failures as input variable and CTBF as predictor variable.

5.Conclusion
In this study, applicability and suitability of ANN technique
for the development of better cumulative time between
failure prediction model has been demonstrated. These
models are fast, having quick computation capability, been
able to handle noisy data in the current study under
consideration. From the analysis of the above results it is
seen that the cumulative time between failure prediction
model developed using Feed Forward Neural Network
technique with back propagation training algorithm has been
able to perform well. Also it is seen that it is better able to
handle non linearity in the data. The work has been carried
out using MATLAB environment. From amongst the
training algorithms used, it was concluded that Levenberg-
Marquardt algorithm was the best one to achieve the desired
results. Here also it was observed that varying the number of
hidden layer neurons from 2 to 10 showed variation in the
prediction accuracy of the model and the best model
architecture obtained was 1-5-1 and 3-5-1 for both the
models. Further, comparative study of Models MI-SYS1,
MI-CSR1 with that of MII-SYS1, MII-CSR1 showed that
model MII -CSR1 ha better prediction accuracy than
the rest of the models. Also, dataset CSR1 has resulted in
better accuracy than SYS1 dataset.

References:

[1]. Hassoun, M.H.,(2002), Fundamentals of Artificial
Neural Network, Printice-Hall of India,pp.599-
606.

[2]. Zhang, G. P., (2003), Time series forecasting using
a hybrid ARIMA and neural network model,
Neurocomputing,50,pp 159–175.

[3]. Huang, Y.,(2009),Advances in Artificial Neural
Networks – Methodological Development and
Application, Algorithms, pp. 973-1007.

[4]. Macleod, C. An Introduction to Practical Neural
Networks and Genetic Algorithms for Scientists
and Engineers.

[5]. Maier, H.R., (1995), A review of Artificial Neural
Network., Research Report no. R131. Dept. of
Civil and Env.Engg. The University of Adelaide.

[6]. Jogi John, (2011), “A Performance Based Study of
Software Testing using Artificial Neural Network”,
International Journal of Logic Based Intelligent
Systems, Vol. 1, No. 1,, PP. 45-60.

[7]. Abdelelah M. Mostafa, (2006), “Regression
approach to software reliability models”, Graduate
Theses and Dissertations, University of South
Florida.

[8]. Shaik Nafeez Umar, (2013), “Software Testing
Defect Prediction Model-A Practical Approach”,
International Journal of Research in Engineering
and Technology, Volume: 02 Issue: 05, PP. 741-
745.

[9]. Najia Saher, Dost Muhammad Khan, Faisal
Shahzad, Ayesha Karim, “the quality assessment of
software testing procedure and its effects” sci-
int.com.

[10]. Animesh Kumar Rai, Rana Majumdar
(2014), “Software Reliability Models: Failure rate
Estimation”, International Journal of Latest Trends
in Engineering and Technology (IJLTET) Vol. 4,
Vol. 4 Issue 1, pp. 20-25.

[11]. Voas JM, McGraw G. Software Fault
Injection; 1998.

[12]. http://www.cse.cuhk.edu.hk/~lyu/book/rel
iability/data.html.

http://www.ijrdase.com
http://www.cse.cuhk.edu.hk/~lyu/book/rel

