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An Automated Software Testing Approach using 
Soft Computing Technique 

 
 
 

Abstract--Today, testing is the most challenging and 
dominating activity used by industry, therefore, 
improvement in its effectiveness, both with respect to the 
time and resources, is taken as a major factor by many 
researchers. Using an automated Agent to support the 
activities of human testers can reduce the actual cost of 
the testing process and the related maintenance costs. 
The present work is concerned with developing 
prediction model using a soft computing techniques, viz. 
Artificial Neural Network (ANN) as an automated agent 
to evaluate and analyze software testing and quality 
assessment. A logistic model to be used for testing and 
evaluating the reliability of a software package has been 
developed. Real software failure data has been used for 
the comparison of the proposed logistic models. The 
models predict the mean time between failure (MTBF) of 
software packages. These models are fast, having quick 
computation capability, been able to handle noisy data in 
the current study under consideration. From the analysis 
of the above results it is seen that the cumulative time 
between failure prediction model developed using Feed 
Forward Neural Network technique with back 
propagation training algorithm has been able to perform 
well. Also it is seen that it is better able to handle non 
linearity in the data. From amongst the training 
algorithms used, it was concluded that Levenberg-
Marquardt algorithm was the best one to achieve the 
desired results 
 
Keywords: Software Testing, Soft Computing Technique, 
ANN, MTBF  
 
1. Introduction 
Almost 50% of the software production development cost is 
expended in software testing. It consumes resources and 
adds nothing to the product in terms of functionality. 
Therefore, much effort has been spent in the development of 
automatic software testing tools in order to significantly 
reduce the cost of developing software[6]. A test data 
generator is a tool, which supports and helps the program 
tester to produce test data for software. Ideally, testing 
software guarantees the absence of errors in the software, 
but in reality it only reveals the presence of software errors 
but never guarantees their absence. One objective of 
software testing is to find errors and program structure 
faults. However, a problem might be to decide when to stop 
testing the software, e.g. if no errors are found or, how long 
does one keep looking, if several errors are found. Software 
testing is one of the main feasible methods to increase the 

confidence of the programmers in the correctness and 
reliability of software. Sometimes, programs that are poorly 
tested perform correctly for months and even years before 
some input sets reveal the presence of serious errors. 
Incorrect software that is released to market without being 
fully tested could result in customer dissatisfaction and 
moreover it is vitally important for software in critical 
applications that it is free of software faults which might 
lead to heavy financial loss or even endanger lives. 
Nowadays testing tools can automatically generate test data 
that will satisfy certain criteria, such as branch testing, path 
testing, etc. However, these tools have problems, when 
complicated software is tested. A testing tool should be 
general, robust and generate the right test data 
corresponding to the testing criteria for use in the real world 
of software testing. [1] 
Artificial neural networks (ANNs) have been used in the 
past to handle several aspects of software testing. 
Experiments have been conducted to evaluate the 
effectiveness of generating test cases capable of exposing 
faults, to use principle components analysis to find faults in 
a system, [6] to compare the capabilities of neural networks 
to other fault-exposing techniques,[5] [7] and to find faults 
in failure data. Hence prediction model is going to be 
developed using software failure data. As failure 
occurrences initiate the removal of faults, engineers reported 
failure times and time between failures (TBF). Both have 
been used to find the cummulative time between failures 
(CTBF), which is then used to investigate the reliability 
growth. Models that discuss the behaviour of CTBF are 
called SRMs. 
 
2. Literature Review 
A review of the recent available literature on software 
testing and quality prediction is presented. It covers 
literature on software reliability models, reliability-relevant 
software metrics, software defect prediction model, and 
software quality prediction models and regression testing 
models. Deepam Agarwal, (2004), found out that how well 
the application under test conforms to its specifications. An 
ROC Analysis was carried out to compare the approaches. 
John E. Bentley, Wachovia Bank, Charlotte NC (2005), 
According to them software testing is often less formal and 
rigorous than it should, and reason for that is because the 
project staff is unfamiliar with software testing 
methodologies, approaches, and tools. They said that to 
overcome it every SAS professional should be familiar with 
basic software testing concepts, roles, and terminology. 
Mrs.Agasta Adline, Ramachandran. M(2014) Predicting the 
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fault-proneness of program modules when the fault labels 
for modules are unavailable is a challenging task frequently 
raised in the software industry. They attempted to predict the 
fault–proneness of a program modules when fault labels for 
modules are not present. Xiaoxing Yang, et.al. (2014) Used 
the rank performance optimization technique for software 
forecasting model development. For this rank to learning 
approach was used. Rakesh Roshan, Rabins Porwal,  
Chandra Mani Sharma, (2012),  reviewed the recent 
advancements in this field of Search Based Software 
Testing. It covered the area of modern Software Testing. 
They showed that search based software test has many 
advantages including reduced efforts and improved 
reliability over state-of-the-art approaches of Software 
Testing. Animesh Kumar Rai, Rana Majumdar (2014), 
analysed different types of software reliability models and 
calculated failure rate of the software product. K.Venkata 
Subba Reddy and Dr.B.Raveendra Babu (2013) we propose 
a software reliability growth model, which relatively early in 
the testing and debugging phase, provides accurate 
parameters estimation, gives a very good failure behavior 
prediction and enable software developers to predict when to 
conclude testing, release the software and avoid over testing 
in order to cut the cost during the development and the 
maintenance of the software. Najia Saher, Dost Muhammad 
Khan, Faisal Shahzad, Ayesha Karim,  analysed two points, 
that is at what point when ought to a test be automated and 
when it ought to be manual.  
 
3. Data Used  
Failure data during system testing phase of various projects 
collected at Bell Tele-phone Laboratories, Cyber Security 
and Information Systems In-formation Analysis 
Centre(CSIAC) by John D. Musa are considered.  
Two  numbers of application software testing data set for 
demonstration of predictive performance and prediction 
accuracy as shown in Table 1 has been considered. 70% of 
each dataset is used for training the model and the rest 
failure data is used for validating the model. The datasets are 
downloaded from [12]. 
 

Table 1: Different software failure datasets used 

Project Code 
Project 
Name 

No. of 
Failures 

Development 
Phases 

SYS1 

Real Time 
Command & 
Command 
System 136 

System Test 
Operations 

CSR1 

Real Time 
Command & 
Command 
System 397 

System Test 
Operations 

 
 
Model Inputs and Structure 
The modeling approach used to develop prediction model 
along with details on input and output parameters is given in 
this section. One among the foremost important steps within 
the development of any prediction model is that the choice 
of suitable input variables that may enable any classification 
model to successfully produce the specified results. Sensible 

understanding of the system into consideration is a crucial 
prerequisite for successful application of data driven 
approaches. Physical understanding of the method being 
studied ends up in more sensible choice of the input 
variables. Two types of prediction models have been 
developed. 
 
MODEL-I 
One is the development of Cumulative Time Between 
Failure (CTBF) prediction model, using FFNN algorithm, 
with Cumulative number of Failures is taken as input and 
Cumulative Time Between Failure (CTBF) is taken as 
output variable. Here two different prediction models have 
been developed using two different datasets. The 
nomenclature used are as follows; 

 
Table 2: Structure of Forecasting model both for Model-

I 

Project 
Code 

Model 
Nomenclature 

Used 

Input 
Variables 

Output 
Variable 

SYS1 M1-SYS1 
No. of 
Failures 

CTBF 

CSR1 M1-CSR1 
No. of 
Failures 

CTBF 

 
MODEL-II 
Here interpretation has been carried out with no of failures 
as a function of cumulative execution time. The 
nomenclature used for different models are tabulated as 
below. 
 
Table 3:  Structure of Forecasting model both for Model-

II 

Project 
Code 

Model 
Nomenclature 

Used 

Input 
Variables 

Output 
Variable 

SYS1 M2-SYS1 

CTBF(t-2), 
CTBF(t-1), 
CTBF(t) 

CTBF(t+1) 

CSR1 M2-CSR1 

CTBF(t-2), 
CTBF(t-1), 
CTBF(t) 

CTBF(t+1) 

 
Artificial Neural Network (ANN) Model Development 
Here optimal network geometry was investigated, using trial 
and error approach in an attempt to create more optimum 
model.  The number of hidden nodes was used to guide the 
trial and error search approach for the optimal geometry [8]; 
however since an optimum model has been sought, only 
models containing less than ten  hidden nodes were 
considered. Thus to minimise the number of networks that 
required training and testing, ANN’s containing 1 to 10  
nodes were considered in order to narrow down the search. 
Once this range was determined, the trial and error approach 
was repeated, with the number of hidden nodes increasing in 
increment of one from minimum nodes onwards. Finally the 
optimum nodes were found for the best developed network 
and the networks on either side of the best developed 
network were also tested.  The models developed in this 
research contained a single hidden layer with sigmoid 
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logistic activation function in the hidden nodes and output 
node.  The number of nodes in the input layer has been kept 
fixed to three in all the six models considered [4][8]. The 
learning rate was also initially kept to minimum and slowly 
increased. Further in order to resolve the contradiction of 
using slow or high learning rate ( ), a momentum ( ) term 
was introduced which provided a built in inertia allowing a 
slow learning rate but faster learning. Thus various 
permutation and combinations of both these factors were 
used during the training process. The fixed period stops of 
1000 cycles was used for training the network and the target 
error was set to stop during training when the average error 
reaches below 0.00999. Model parameter values for Back 
Propagation Algorithm are given below in Table 4.  
 
Table 4: Model parameter values for Back Propagation 

Algorithm for both the models 
 

Parameters Range of values 
Training Function ‘trainlm’ 
Adaptation Learning 
Function 

‘learnGD’ 

Training mode Supervise 
Gradient mode Jacobian 
Performance Function MSE, SSE, MAE 
Transfer Function For Hidden layer – tansigmoid 

For output layer - linear 
Number of Hidden nodes  2-5 
Learning Rate ( ) 0.1 to 0.9 
Momemtum ( ) 0.1 to 0.9 
No. of epochs 100 

 
 
Various network architectures were investigated in order to 
determine the optimal MLP architecture (i.e. the lowest 
mean square error and the optimum regression value) for the 
given combination of sixteen input variables. Different 
training algorithms were used with changes in the number of 
neurons in the hidden layers. In addition, the effect of  
transfer functions i.e. tangent sigmoid in the hidden layer 
were also investigated. 
 
4. Results and Discussions:  
Given below in Table 5 are the error values for best 
developed Model-I obtained using 1-5-1 network 
configuration for both the datasets.  

Table 5: Error Values for Model-I 
Model No. MAE MSE SSE 
M1-SYS1 0.0259 0.0013 0.0798 
M1-CSR1 0.0191 0.000651 0.0976 

 
Further Table 6 depicts the error values for best developed 
Model-II obtained using 3-5-1 network configuration for 
both the datasets.  

Table 6: Error Values for Model-II 
Model No. MAE MSE SSE 
M2-SYS1 0.0202 0.000904 0.0542 
M2-CSR1 0.0128 0.000293 0.0439 

 
A comparative error plots of both the models using one and 
three input variables is given in figures 1 to 3 below. 

 
Fig. 1: SSE Plot for M-1 & M-2 models 

 

 
Fig. 2: MAE Plot for M-1 & M-2 models 

 

 
Fig. 3: MSE Plot for M-1 & M-2 models 

 
Once the training process is complete and the results are 
obtained, then their accuracy is ascertained by using the 
testing data such that the predicted results are very close to 
the observed ones.  
 

 
 

Fig. 4: Regression Plot during training for M1-CSR1 
Model 
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Fig. 5: Regression Plot during training for M2-CSR1 

Model 
 

 
 

Fig. 6: Depicts the training of NN Model gauged by MSE 
for N=5 using Levenberg-Marquardt training algorithm 

with Gradient Descent with momentum as training 
function for M1-CSR1 Model 

 

 
Fig. 7: Depicts the training of NN Model gauged by MSE 
for N=5 using Levenberg-Marquardt training algorithm 

with Gradient Descent with momentum as training 
function for for M2-CSR1 Model 

 
Fig 4 and Fig. 5 shows the regression plot of training, testing 
and validation results, whereas on the other hand fig 6 and 
Fig. 7 demonstrates the plot of MSE for the bet developed 
ANN model, i.e. 1-5-1 and 3-5-1, using Levenberg 
Marquardt training algorithm for best developed M1-
CSR1and M2-CSR1 Models. For finding the accuracy of the 
models during training, testing and validation stage, MSE 
criteria is used. As seen from figures 4.6 and 4.7 the 

performance in case of both the models improved even 
when the network error was low. It was noticed that in case 
of M1-CSR1 initially there was sharp fall in the nerwork 
error and at epoch 5 errors for training, testing and 
validation datasets got saturated and best validation result 
was obtained as 0.00062959 at epoch number 82, while in 
case of M2-CSR1 Model, though the initial fall in error 
values was the same but around epoch 10 it got saturated 
and the best validation result obtained was 0.0004124 at 
epoch number 169.  The network model 1-5-1 and 3-5-1, 
which are the best can be considered as the best selection of 
network topology. This topology is able to maintain the 
number of layers, processing elements, generalization 
characteristics. This also can be seen that the training time 
elapsed has also been reduced due to less iteration required 
as each time.  

 
 

Fig. 8: Plot of Observed Vs. Predicted CTBF during 
testing for M1-CSR1 Model 

 

 
 

Fig. 9: Plot of Observed Vs. Predicted CTBF during 
testing for M2-CSR1 Model 

 
Figures 4.8 and 4.9, for Models M1-CSR1 and M2-CSR1 
respectively shows the comparative analysis of the observed 
and forecasted values of the Cummulative TBF, for testing 
datasets,  by the optimum model developed. This model 
used LM training algorithm and GDM training function for  
N=5. Here it is seen that the observed values and predicted 
values are almost similar, except for few instances. This 
demonstrates the validity of the ANN technique for the 
development of a suitable prediction model. Hence the 
inference drawn from the obtained results are that ANN 
models have been able to achieve the desired output.  
From detailed analysis of the two models M1 and M2, using 
one and three input variables respectively, it can be seen that 
in both the cases data CSR1 has resulted in the development 
of better prediction model. Further, the comparative plots of 
both the models with respect to MSE, SSE and MAE, as 
given in Figs. 4.1 to 4.3, clearly demonstrates that the model 
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developed with three input variables, considering only the 
CTBF as data and output as one step ahead CTBF has 
shown greater accuracy in terms of various performance 
criteria, as against Model-I, which considers number of 
failures as input variable and CTBF as predictor variable. 
 
5.Conclusion  
In this study, applicability and suitability of ANN technique 
for the development of better cumulative time between 
failure prediction model has been demonstrated. These 
models are fast, having quick computation capability, been 
able to handle noisy data in the current study under 
consideration. From the analysis of the above results it is 
seen that the cumulative time between failure prediction 
model developed using Feed Forward Neural Network 
technique with back propagation training algorithm has been 
able to perform well. Also it is seen that it is better able to 
handle non linearity in the data. The work has been carried 
out using MATLAB environment. From amongst the 
training algorithms used, it was concluded that Levenberg-
Marquardt algorithm was the best one to achieve the desired 
results. Here also it was observed that varying the number of 
hidden layer neurons from 2 to 10 showed variation in the 
prediction accuracy of the model and the best model 
architecture obtained was 1-5-1 and 3-5-1 for both the 
models. Further, comparative study of Models MI-SYS1, 
MI-CSR1 with that of MII-SYS1, MII-CSR1 showed that 
model MII -CSR1 ha better prediction accuracy than 
the rest of the models. Also, dataset CSR1 has resulted in 
better accuracy than SYS1 dataset.  
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