
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 1, March 2017

An Automated Software Reliability Testing
Approach using Artificial Intelligence Technique

Abstract--Software reliability is one of the important
factors which decide the quality of the software
.Software is thoroughly checked and errors are removed
before it is delivered to the client. A key factor in the
success of a software project is achieving the best-
possible software reliability. Software reliability is a
mathematical model which ensures that software
development has been done within cost and time and it
will not cause failure under specified conditions.
Different types of SRMs are used for different phases of
the software development life-cycle. The present work is
concerned with developing prediction model using a soft
computing techniques, viz. Artificial Neural Network
(ANN) as an automated agent to evaluate and analyze
software testing and quality assessment. A logistic model
to be used for testing and evaluating the reliability of a
software package has been developed. Real software
failure data has been used for the comparison of the
proposed logistic models. The models predict the mean
time between failure (MTBF) of software packages.
These models are fast, having quick computation
capability, been able to handle noisy data in the current
study under consideration. From the analysis of the
above results it is seen that the cumulative time between
failure prediction model developed using Feed Forward
Neural Network technique with back propagation
training algorithm has been able to perform well. Also it
is seen that it is better able to handle non linearity in the
data. From amongst the training algorithms used, it was
concluded that Levenberg-Marquardt algorithm was the
best one to achieve the desired results

Keywords: Software Testing, Soft Computing Technique,
ANN, MTBF

1. Introduction:
The basic goal of software development is to produce high
quality software at low cost and within time. As the size and
complexity of the software grows the issues with the
reliability of the software also grows. So there is
requirement of a software reliability model which ensures
that the operation is failure free. It is very desirable to know
the probability of software failure or the rate at which
software errors will occur. SRGMs are mathematical models
which describes how software attains reliability when the
faults are detected and removed[1]. It indicates when
software is ready to release and it has gain the expected
reliability level[7]. Many SRGMs have been proposed in the

past to estimate the expected number of total defects (or
failures) or the expected number of remaining defects/
failures.

From the paper itself
Artificial neural networks (ANNs) have been used in the
past to handle several aspects of software testing.
Experiments have been conducted to evaluate the
effectiveness of generating test cases capable of exposing
faults, to use principle components analysis to find faults in
a system, [6] to compare the capabilities of neural networks
to other fault-exposing techniques,[5] [7] and to find faults
in failure data. Hence prediction model is going to be
developed using software failure data. As failure
occurrences initiate the removal of faults, engineers reported
failure times and time between failures (TBF). Both have
been used to find the cummulative time between failures
(CTBF), which is then used to investigate the reliability
growth. Models that discuss the behaviour of CTBF are
called SRMs.

2. Literature Review:
A review of the recent available literature on software
testing and quality prediction is presented. It covers
literature on software reliability models, reliability-relevant
software metrics, software defect prediction model, and
software quality prediction models and regression testing
models. Deepam Agarwal, (2004), found out that how well
the application under test conforms to its specifications. An
ROC Analysis was carried out to compare the approaches.
John E. Bentley, Wachovia Bank, Charlotte NC (2005),
According to them software testing is often less formal and
rigorous than it should, and reason for that is because the
project staff is unfamiliar with software testing
methodologies, approaches, and tools. They said that to
overcome it every SAS professional should be familiar with
basic software testing concepts, roles, and terminology.
Mrs.Agasta Adline, Ramachandran. M(2014) Predicting the
fault-proneness of program modules when the fault labels
for modules are unavailable is a challenging task frequently
raised in the software industry. They attempted to predict the
fault–proneness of a program modules when fault labels for
modules are not present. Xiaoxing Yang, et.al. (2014) Used
the rank performance optimization technique for software
forecasting model development. For this rank to learning
approach was used. Rakesh Roshan, Rabins Porwal,
Chandra Mani Sharma, (2012), reviewed the recent
advancements in this field of Search Based Software

Brijesh Pandey
Computer Science and Engg

Goel Group of Intitutions., Lucknow
brijesh48academics@gmail.com

Ritika Chandel
Computer Science and Engg

Goel Group of Intitutions., Lucknow

http://www.ijrdase.com
mailto:brijesh48academics@gmail.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 1, March 2017

Testing. It covered the area of modern Software Testing.
They showed that search based software test has many
advantages including reduced efforts and improved
reliability over state-of-the-art approaches of Software
Testing. Animesh Kumar Rai, Rana Majumdar (2014),
analysed different types of software reliability models and
calculated failure rate of the software product. K.Venkata
Subba Reddy and Dr.B.Raveendra Babu (2013) we propose
a software reliability growth model, which relatively early in
the testing and debugging phase, provides accurate
parameters estimation, gives a very good failure behavior
prediction and enable software developers to predict when to
conclude testing, release the software and avoid over testing
in order to cut the cost during the development and the
maintenance of the software. Najia Saher, Dost Muhammad
Khan, Faisal Shahzad, Ayesha Karim, analysed two points,
that is at what point when ought to a test be automated and
when it ought to be manual.

3. Data Used
Failure data during system testing phase of various projects
collected at Bell Tele-phone Laboratories, Cyber Security
and Information Systems In-formation Analysis
Centre(CSIAC) by John D. Musa are considered.
Five numbers of application software testing data set for
demonstration of predictive performance and prediction
accuracy as shown in Table 1 has been considered. 70% of
each dataset is used for training the model and the rest
failure data is used for validating the model. The datasets are
downloaded from [12].

Table 1: Different software failure datasets used

Project
Code Project Name

No. of
Failures

Development
Phases

SYS1

Real Time
Command &
Command System 136

System Test
Operations

CSR1

Real Time
Command &
Command System 397

System Test
Operations

4. Model Inputs and Structure
The modeling approach used to develop prediction model
along with details on input and output parameters is given in
this section. One among the foremost important steps within
the development of any prediction model is that the choice
of suitable input variables that may enable any classification
model to successfully produce the specified results. Sensible
understanding of the system into consideration is a crucial
prerequisite for successful application of data driven
approaches. Physical understanding of the method being
studied ends up in more sensible choice of the input
variables.
The model developed has Cumulative Time Between Failure
(CTBF) prediction model, using FFNN algorithm, with
Cumulative number of Failures is taken as input and
Cumulative Time Between Failure (CTBF) is taken as
output variable. The nomenclature used are as follows;

Table 2: Structure of Forecasting model both for Model-
I

Project
Code

Model
Nomenclat
ure Used

Input
Variables

Output
Variable

SYS1 M1-SYS1
No. of
Failures

CTBF

CSR1 M1-CSR1
No. of
Failures

CTBF

5. Artificial Neural Network (ANN) Model Development:
Here optimal network geometry was investigated, using trial
and error approach in an attempt to create more optimum
model. The number of hidden nodes was used to guide the
trial and error search approach for the optimal geometry [8];
however since an optimum model has been sought, only
models containing less than ten hidden nodes were
considered. Thus to minimise the number of networks that
required training and testing, ANN’s containing 1 to 10
nodes were considered in order to narrow down the search.
Once this range was determined, the trial and error approach
was repeated, with the number of hidden nodes increasing in
increment of one from minimum nodes onwards. Finally the
optimum nodes were found for the best developed network
and the networks on either side of the best developed
network were also tested. The models developed in this
research contained a single hidden layer with sigmoid
logistic activation function in the hidden nodes and output
node. The number of nodes in the input layer has been kept
fixed to three in all the six models considered [4][8]. The
learning rate was also initially kept to minimum and slowly
increased. Further in order to resolve the contradiction of
using slow or high learning rate (), a momentum () term
was introduced which provided a built in inertia allowing a
slow learning rate but faster learning. Thus various
permutation and combinations of both these factors were
used during the training process. The fixed period stops of
1000 cycles was used for training the network and the target
error was set to stop during training when the average error
reaches below 0.00999. Model parameter values for Back
Propagation Algorithm are given below in Table 3.

Table. 3: Model parameter values for Back Propagation

Algorithm for both the models
Parameters Range of values
Training Function ‘trainlm’
Adaptation Learning
Function

‘learnGD’

Training mode Supervise
Gradient mode Jacobian
Performance Function MSE, SSE, MAE
Transfer Function For Hidden layer –

tansigmoid
For output layer - linear

Number of Hidden nodes 2-5
Learning Rate () 0.1 to 0.9
Momemtum () 0.1 to 0.9
No. of epochs 100

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 1, March 2017

Various network architectures were investigated in order to
determine the optimal MLP architecture (i.e. the lowest
mean square error and the optimum regression value) for the
given combination of sixteen input variables. Different
training algorithms were used with changes in the number of
neurons in the hidden layers. In addition, the effect of
transfer functions i.e. tangent sigmoid in the hidden layer
were also investigated.

6. Results and Discussions:
Given below in Table 4 are the error values for best
developed Model obtained using 1-5-1 network
configuration for both the datasets.

Table 4: Error Values for Model
Model No. MAE MSE SSE
M1-SYS1 0.0259 0.0013 0.0798
M1-CSR1 0.0191 0.000651 0.0976

Once the training process is complete and the results are
obtained, then their accuracy is ascertained by using the
testing data such that the predicted results are very close to
the observed ones.

Fig. 1. Regression Plot during training for M1-CSR1

Model

Fig. 2. Depicts the training of NN Model gauged by MSE
for N=5 using Levenberg-Marquardt training algorithm

with Gradient Descent with momentum as training
function for M1-CSR1 Model

Fig 1 shows the regression plot of training, testing and
validation results, whereas on the other hand and Fig. 2

demonstrates the plot of MSE for the bet developed ANN
model, i.e. 1-5-1, using Levenberg Marquardt training
algorithm for best developed M1-CSR1Model. For finding
the accuracy of the models during training, testing and
validation stage, MSE criteria is used. As seen from figures
4.2 the performance for the model improved even when the
network error was low. It was noticed that in case of M1-
CSR1 initially there was sharp fall in the nerwork error and
at epoch 5 errors for training, testing and validation datasets
got saturated and best validation result was obtained as
0.00062959 at epoch number 82. The network model 1-5-1,
which is the best can be considered as the best selection of
network topology. This topology is able to maintain the
number of layers, processing elements, generalization
characteristics. This also can be seen that the training time
elapsed has also been reduced due to less iteration required
as each time.

Fig. 3. Plot of Observed Vs. Predicted CTBF during
testing for M1-CSR1 Model

Fig. 3 for Model M1-CSR1 shows the comparative

analysis of the observed and forecasted values of the
Cummulative TBF, for testing datasets, by the optimum
model developed. This model used LM training algorithm
and GDM training function for N=5. Here it is seen that the
observed values and predicted values are almost similar,
except for few instances. This demonstrates the validity of
the ANN technique for the development of a suitable
prediction model. Hence the inference drawn from the
obtained results are that ANN models have been able to
achieve the desired output.
From detailed analysis of the model using one input variable
it can be seen that in this case data CSR1 has resulted in the
development of better prediction model.

7. Conclusion:
In the present work feed forward neural network with back
propagation learning algorithm, as an automated agent has
been successfully implemented. The observations conclude
that neural network model performs better in terms of less
error in prediction as compared to existing analytical models
and hence it is a better alternative to do software testing and
reliability assessment. As the connection weights are
randomly initialized, thus the neural network gives different
results for the same datasets and thus the performance of the
network varies. The neural network is shown to be a
promising method of testing a software application provided
that the training data have a good coverage of the input
range. The back propagation method of training the neural

0

20000

40000

60000

80000

100000

120000

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

Cu
m

m
. T

BF
 (s

ec
s.

)

No. of Failures

Testing Data Ts…

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 1, March 2017

network is a relatively rigorous method capable of
generalization, and one of its properties ensures that the
network can be updated by learning new data. As the
software that the network is trained to simulate is updated,
so too can the trained neural network learn to classify the
new data. Thus, the neural network is capable of learning
new versions of evolving software.
The work involves application of ANN for the development
of cumulative time between failures (CTBF) prediction
models using six different datasets collected during system
testing phase of various projects at Bell Tele-phone
Laboratories, Cyber Security and Information Systems In-
formation Analysis Centre(CSIAC). The model
development phase involves the development of the model
using only one input variable, number of failures, has been
considered. Overall analysis of the results as given above
demonstrates that Neural Network method is dependent on
the nature of dataset up to a greater extent. Neural Network
model gives better result for larger datasets than smaller
datasets. These models are easily compatible with different
smooth trend data set and projects. The program has been
implemented in MATLAB.

References:

[1]. Hassoun, m.h.,(2002), fundamentals of artificial
neural network, printice-hall of india,pp.599-606.

[2]. Zhang, g. P., (2003), time series forecasting using
a hybrid arima and neural network model,
neurocomputing,50,pp 159–175.

[3]. Huang, y.,(2009),advances in artificial neural
networks – methodological development and
application, algorithms, pp. 973-1007.

[4]. Macleod, c. An introduction to practical neural
networks and genetic algorithms for scientists and
engineers.

[5]. Maier, h.r., (1995), a review of artificial neural
network., research report no. R131. Dept. Of civil
and env.engg. The university of adelaide.

[6]. Jogi john, (2011), “a performance based study of
software testing using artificial neural network”,
international journal of logic based intelligent
systems, vol. 1, no. 1,, pp. 45-60.

[7]. Abdelelah m. Mostafa, (2006), “regression
approach to software reliability models”, graduate
theses and dissertations, university of south florida.

[8]. Shaik nafeez umar, (2013), “ software testing
defect prediction model-a practical approach”,
international journal of research in engineering and
technology, volume: 02 issue: 05, pp. 741-745.

[9]. Najia saher, dost muhammad khan, faisal shahzad,
ayesha karim, “ the quality assessment of software
testing procedure and its effects”.

[10]. Animesh kumar rai, rana majumdar (2014),
“software reliability models: failure rate
estimation”, international journal of latest trends in
engineering and technology (ijltet) vol. 4, vol. 4
issue 1, pp. 20-25.

[11]. Voas jm, mcgraw g. Software fault injection;
1998.

[12]. http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

data.html.

http://www.ijrdase.com
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

