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Abstract--Software reliability is one of the important 
factors which decide the quality of the software 
.Software is thoroughly checked and errors are removed 
before it is delivered to the client. A key factor in the 
success of a software project is achieving the best-
possible software reliability. Software reliability is a 
mathematical model which ensures that software 
development has been done within cost and time and it 
will not cause failure under specified conditions. 
Different types of SRMs are used for different phases of 
the software development life-cycle. The present work is 
concerned with developing prediction model using a soft 
computing techniques, viz. Artificial Neural Network 
(ANN) as an automated agent to evaluate and analyze 
software testing and quality assessment. A logistic model 
to be used for testing and evaluating the reliability of a 
software package has been developed. Real software 
failure data has been used for the comparison of the 
proposed logistic models. The models predict the mean 
time between failure (MTBF) of software packages. 
These models are fast, having quick computation 
capability, been able to handle noisy data in the current 
study under consideration. From the analysis of the 
above results it is seen that the cumulative time between 
failure prediction model developed using Feed Forward 
Neural Network technique with back propagation 
training algorithm has been able to perform well. Also it 
is seen that it is better able to handle non linearity in the 
data. From amongst the training algorithms used, it was 
concluded that Levenberg-Marquardt algorithm was the 
best one to achieve the desired results 
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1. Introduction: 
The basic goal of software development is to produce high 
quality software at low cost and within time. As the size and 
complexity of the software grows the issues with the 
reliability of the software also grows. So there is 
requirement of a software reliability model which ensures 
that the operation is failure free. It is very desirable to know 
the probability of software failure or the rate at which 
software errors will occur. SRGMs are mathematical models 
which describes how software attains reliability when the 
faults are detected and removed[1]. It indicates when 
software is ready to release and it has gain the expected 
reliability level[7]. Many SRGMs have been proposed in the 

past to estimate the expected number of total defects (or 
failures) or the expected number of remaining defects/ 
failures.  
 
From the paper itself 
Artificial neural networks (ANNs) have been used in the 
past to handle several aspects of software testing. 
Experiments have been conducted to evaluate the 
effectiveness of generating test cases capable of exposing 
faults, to use principle components analysis to find faults in 
a system, [6] to compare the capabilities of neural networks 
to other fault-exposing techniques,[5] [7] and to find faults 
in failure data. Hence prediction model is going to be 
developed using software failure data. As failure 
occurrences initiate the removal of faults, engineers reported 
failure times and time between failures (TBF). Both have 
been used to find the cummulative time between failures 
(CTBF), which is then used to investigate the reliability 
growth. Models that discuss the behaviour of CTBF are 
called SRMs. 
 
2. Literature Review: 
A review of the recent available literature on software 
testing and quality prediction is presented. It covers 
literature on software reliability models, reliability-relevant 
software metrics, software defect prediction model, and 
software quality prediction models and regression testing 
models. Deepam Agarwal, (2004), found out that how well 
the application under test conforms to its specifications. An 
ROC Analysis was carried out to compare the approaches. 
John E. Bentley, Wachovia Bank, Charlotte NC (2005), 
According to them software testing is often less formal and 
rigorous than it should, and reason for that is because the 
project staff is unfamiliar with software testing 
methodologies, approaches, and tools. They said that to 
overcome it every SAS professional should be familiar with 
basic software testing concepts, roles, and terminology. 
Mrs.Agasta Adline, Ramachandran. M(2014) Predicting the 
fault-proneness of program modules when the fault labels 
for modules are unavailable is a challenging task frequently 
raised in the software industry. They attempted to predict the 
fault–proneness of a program modules when fault labels for 
modules are not present. Xiaoxing Yang, et.al. (2014) Used 
the rank performance optimization technique for software 
forecasting model development. For this rank to learning 
approach was used. Rakesh Roshan, Rabins Porwal,  
Chandra Mani Sharma, (2012),  reviewed the recent 
advancements in this field of Search Based Software 
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Testing. It covered the area of modern Software Testing. 
They showed that search based software test has many 
advantages including reduced efforts and improved 
reliability over state-of-the-art approaches of Software 
Testing. Animesh Kumar Rai, Rana Majumdar (2014), 
analysed different types of software reliability models and 
calculated failure rate of the software product. K.Venkata 
Subba Reddy and Dr.B.Raveendra Babu (2013) we propose 
a software reliability growth model, which relatively early in 
the testing and debugging phase, provides accurate 
parameters estimation, gives a very good failure behavior 
prediction and enable software developers to predict when to 
conclude testing, release the software and avoid over testing 
in order to cut the cost during the development and the 
maintenance of the software. Najia Saher, Dost Muhammad 
Khan, Faisal Shahzad, Ayesha Karim,  analysed two points, 
that is at what point when ought to a test be automated and 
when it ought to be manual.  
 
3. Data Used  
Failure data during system testing phase of various projects 
collected at Bell Tele-phone Laboratories, Cyber Security 
and Information Systems In-formation Analysis 
Centre(CSIAC) by John D. Musa are considered.  
Five numbers of application software testing data set for 
demonstration of predictive performance and prediction 
accuracy as shown in Table 1 has been considered. 70% of 
each dataset is used for training the model and the rest 
failure data is used for validating the model. The datasets are 
downloaded from [12]. 

 
Table 1: Different software failure datasets used 

Project 
Code Project Name 

No. of 
Failures 

Development 
Phases 

SYS1 

Real Time 
Command & 
Command System 136 

System Test 
Operations 

CSR1 

Real Time 
Command & 
Command System 397 

System Test 
Operations 

 
4. Model Inputs and Structure 
The modeling approach used to develop prediction model 
along with details on input and output parameters is given in 
this section. One among the foremost important steps within 
the development of any prediction model is that the choice 
of suitable input variables that may enable any classification 
model to successfully produce the specified results. Sensible 
understanding of the system into consideration is a crucial 
prerequisite for successful application of data driven 
approaches. Physical understanding of the method being 
studied ends up in more sensible choice of the input 
variables.  
The model developed has Cumulative Time Between Failure 
(CTBF) prediction model, using FFNN algorithm, with 
Cumulative number of Failures is taken as input and 
Cumulative Time Between Failure (CTBF) is taken as 
output variable. The nomenclature used are as follows; 

 
 

Table 2: Structure of Forecasting model both for Model-
I 

Project 
Code 

Model 
Nomenclat
ure Used 

Input 
Variables 

Output 
Variable 

SYS1 M1-SYS1 
No. of 
Failures 

CTBF 

CSR1 M1-CSR1 
No. of 
Failures 

CTBF 

 
5. Artificial Neural Network (ANN) Model Development: 
Here optimal network geometry was investigated, using trial 
and error approach in an attempt to create more optimum 
model.  The number of hidden nodes was used to guide the 
trial and error search approach for the optimal geometry [8]; 
however since an optimum model has been sought, only 
models containing less than ten  hidden nodes were 
considered. Thus to minimise the number of networks that 
required training and testing, ANN’s containing 1 to 10  
nodes were considered in order to narrow down the search. 
Once this range was determined, the trial and error approach 
was repeated, with the number of hidden nodes increasing in 
increment of one from minimum nodes onwards. Finally the 
optimum nodes were found for the best developed network 
and the networks on either side of the best developed 
network were also tested.  The models developed in this 
research contained a single hidden layer with sigmoid 
logistic activation function in the hidden nodes and output 
node.  The number of nodes in the input layer has been kept 
fixed to three in all the six models considered [4][8]. The 
learning rate was also initially kept to minimum and slowly 
increased. Further in order to resolve the contradiction of 
using slow or high learning rate ( ), a momentum ( ) term 
was introduced which provided a built in inertia allowing a 
slow learning rate but faster learning. Thus various 
permutation and combinations of both these factors were 
used during the training process. The fixed period stops of 
1000 cycles was used for training the network and the target 
error was set to stop during training when the average error 
reaches below 0.00999. Model parameter values for Back 
Propagation Algorithm are given below in Table 3.  
 
Table. 3: Model parameter values for Back Propagation 

Algorithm for both the models 
Parameters Range of values 
Training Function ‘trainlm’ 
Adaptation Learning 
Function 

‘learnGD’ 

Training mode Supervise 
Gradient mode Jacobian 
Performance Function MSE, SSE, MAE 
Transfer Function For Hidden layer – 

tansigmoid 
For output layer - linear 

Number of Hidden nodes  2-5 
Learning Rate ( ) 0.1 to 0.9 
Momemtum ( ) 0.1 to 0.9 
No. of epochs 100 
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Various network architectures were investigated in order to 
determine the optimal MLP architecture (i.e. the lowest 
mean square error and the optimum regression value) for the 
given combination of sixteen input variables. Different 
training algorithms were used with changes in the number of 
neurons in the hidden layers. In addition, the effect of  
transfer functions i.e. tangent sigmoid in the hidden layer 
were also investigated. 
 
6. Results and Discussions:  
Given below in Table 4 are the error values for best 
developed Model obtained using 1-5-1 network 
configuration for both the datasets.  

Table 4: Error Values for Model 
Model No. MAE MSE SSE 
M1-SYS1 0.0259 0.0013 0.0798 
M1-CSR1 0.0191 0.000651 0.0976 

 
Once the training process is complete and the results are 
obtained, then their accuracy is ascertained by using the 
testing data such that the predicted results are very close to 
the observed ones.  
 

 
Fig. 1. Regression Plot during training for M1-CSR1 

Model 
 

 
Fig. 2. Depicts the training of NN Model gauged by MSE 
for N=5 using Levenberg-Marquardt training algorithm 

with Gradient Descent with momentum as training 
function for M1-CSR1 Model 

 
Fig 1 shows the regression plot of training, testing and 
validation results, whereas on the other hand and Fig. 2 

demonstrates the plot of MSE for the bet developed ANN 
model, i.e. 1-5-1, using Levenberg Marquardt training 
algorithm for best developed M1-CSR1Model. For finding 
the accuracy of the models during training, testing and 
validation stage, MSE criteria is used. As seen from figures 
4.2 the performance for the model improved even when the 
network error was low. It was noticed that in case of M1-
CSR1 initially there was sharp fall in the nerwork error and 
at epoch 5 errors for training, testing and validation datasets 
got saturated and best validation result was obtained as 
0.00062959 at epoch number 82. The network model 1-5-1, 
which is the best can be considered as the best selection of 
network topology. This topology is able to maintain the 
number of layers, processing elements, generalization 
characteristics. This also can be seen that the training time 
elapsed has also been reduced due to less iteration required 
as each time. 
  

 
 

Fig. 3. Plot of Observed Vs. Predicted CTBF during 
testing for M1-CSR1 Model 

 
Fig. 3 for Model M1-CSR1 shows the comparative 

analysis of the observed and forecasted values of the 
Cummulative TBF, for testing datasets,  by the optimum 
model developed. This model used LM training algorithm 
and GDM training function for  N=5. Here it is seen that the 
observed values and predicted values are almost similar, 
except for few instances. This demonstrates the validity of 
the ANN technique for the development of a suitable 
prediction model. Hence the inference drawn from the 
obtained results are that ANN models have been able to 
achieve the desired output.  
From detailed analysis of the model using one input variable 
it can be seen that in this case data CSR1 has resulted in the 
development of better prediction model.  
 
7. Conclusion: 
In the present work feed forward neural network with back 
propagation learning algorithm, as an automated agent has 
been successfully implemented. The observations conclude 
that neural network model performs better in terms of less 
error in prediction as compared to existing analytical models 
and hence it is a better alternative to do software testing and 
reliability assessment. As the connection weights are 
randomly initialized, thus the neural network gives different 
results for the same datasets and thus the performance of the 
network varies. The neural network is shown to be a 
promising method of testing a software application provided 
that the training data have a good coverage of the input 
range. The back propagation method of training the neural 
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network is a relatively rigorous method capable of 
generalization, and one of its properties ensures that the 
network can be updated by learning new data. As the 
software that the network is trained to simulate is updated, 
so too can the trained neural network learn to classify the 
new data. Thus, the neural network is capable of learning 
new versions of evolving software. 
The work involves application of ANN for the development 
of cumulative time between failures (CTBF) prediction 
models using six different datasets collected during system 
testing phase of various projects at Bell Tele-phone 
Laboratories, Cyber Security and Information Systems In-
formation Analysis Centre(CSIAC). The model 
development phase involves the development of the model 
using only one input variable, number of failures, has been 
considered. Overall analysis of the results as given above 
demonstrates that Neural Network method is dependent on 
the nature of dataset up to a greater extent. Neural Network 
model gives better result for larger datasets than smaller 
datasets. These models are easily compatible with different 
smooth trend data set and projects. The program has been 
implemented  in MATLAB.  
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