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Wideband Spectrum Sensing in Cognitive Radio using 
Multicoset Sampler 

 
 
 
 
 
 
Abstract--The work will focus the area of spectrum sensing 
methodology used in cognitive radio. The main challenge 
in the spectrum sensing is the need of a very high sampling 
rate for sensing the wideband signal. Hence a wideband 
spectrum sensing model will be developed using MATLAB 
software based programming environment. The algorithm 
will utilize a sub sampling scheme that can help in 
reducing the requirement of very high sampling rate 
during wideband spectrum sensing. For this purpose a 
finite number of noisy samples will be generated initially 
and the correlation of these finite samples will be evaluated 
and to find out the occupied and vacant channels of the 
spectrum, we use subspace estimation algorithm. 
 
Keyword: Cognitive radio, Subspace estimation algorithm, 
Sampling and Wideband spectrum. 
 
1. Introduction: 
Radio frequency (RF) spectrum is a valuable but tightly 
regulated resource due to its unique and important role in 
wireless communications. With the proliferation of wireless 
services, the demands for the RF spectrum are constantly 
increasing, leading to scarce spectrum resources. Onthe other 
hand, it has been reported that localized temporal and 
geographic spectrum utilization is extremely low [1]. 
Currently, new spectrum policies are being developed by the 
Federal Communications Commission (FCC) that will allow 
secondary users to opportunistically access a licensed band, 
when the primary user (PU) is absent. Cognitive radio [2], [3] 
has become a promising solution to solve the spectrum 
scarcity problem in the next generation cellular networks by 
exploiting opportunities in time, frequency, and space 
domains. Cognitive radio is an advanced software-defined 
radio that automatically detects its surrounding RF stimuli and 
intelligently adapts its operating parameters to network 
infrastructure while meeting user demands. Since cognitive 
radios are considered as secondary users for using the licensed 
spectrum, a crucial requirement of cognitive radio networks is 
that they must efficiently exploit under-utilized spectrum 
(denoted as spectral opportunities) without causing harmful 
interference to the PUs. Furthermore, PUs have no obligation 
to share and change their operating parameters for sharing 
spectrum with cognitive radio networks. Hence, cognitive 
radios should be able to independently detect spectral 
opportunities without any assistance from PUs; this ability is 
called spectrum sensing, which is considered as one of the 
most critical components in cognitive radio networks. Many 

narrowband spectrum sensing algorithms have been studied in 
the literature [4] and references therein, including matched-
filtering, energy detection [5], and cyclostationary feature 
detection. While present narrowband spectrum sensing 
algorithms have focused on exploiting spectral opportunities 
over narrow frequency range, cognitive radio networks will 
eventually be required to exploit spectral opportunities over 
wide frequency range from hundreds of megahertz (MHz) to 
several Gigahertz (GHz) for achieving higher opportunistic 
throughput. This is driven by the famous Shannon’s formula 
that, under certain conditions, the maximum theoretically 
achievable bit rate is directly proportional to the spectral 
bandwidth. Hence, different from narrowband spectrum 
sensing, wideband spectrum sensing aims to find more 
spectral opportunities over wide frequency range and achieve 
higher opportunistic aggregate throughput in cognitive radio 
networks. However, conventional wideband spectrum sensing 
techniques based on standard analog-to-digital converter 
(ADC) could lead to un-affordably high sampling rate or 
implementation complexity; thus, revolutionary wideband 
spectrum sensing techniques become increasingly important. 
A CR can be programmed to transmit and receive on a variety 
of frequencies, and use different access technologies 
supported by its hardware design. Through this capability, the 
best unutilized spectrum band is chosen by a CR. In order to 
provide these capabilties, CR requires novel radio 
frequency(RF) transceiver architectures. As shown in the 
fig1., in the RF front end the received signal is amplified, 
mixed, and analog-to digital (A/D) converted. In the baseband 
processing unit, the signal is modulated/demodulated. Each 
component can be reconfigured via a control bus to adapt to 
the time varying RF environment. The novel characteristics of 
the CR transceiver is the wideband RF front end i.e. capable of 
simultaneous sensing over a wide frequency range. This 
functionality is related mainly to the RF hardware technology, 
such as wide band antenna, power amplifier and adaptive 
filter. RF hardware for the CR should be capable of being 
tuned to any part of a large range of spectrum. However, 
because the CR transceiver receives signal from various 
transmitters operating at different power levels, bandwidths 
and locations. The RF front end should have the capability to 
detect weak signals in a large dynamic range, which is a major 
challenge in CR transceiver design.  
 
2. Related Work: 
RamanVenkataramaniet. al. (2001) [13],studied the problem 
of optimal sub-Nyquist samplingfor perfect reconstruction of 
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multiband signals. The signalsare assumed to have a known 
spectral support that does not tileunder translation. Such 
signals admit perfect reconstruction fromperiodic nonuniform 
sampling at rates approaching Landau’slower bound equal to 
the measure of F(frequency). For signals with sparse, this rate 
can be much smaller than the Nyquist rate. Unfortunately,the 
reduced sampling rates afforded by this scheme canbe 
accompanied by increased error sensitivity. In a recent study, 
they derived bounds on the error due to missmodelling and 
sampleadditive noise. Adopting these bounds as performance 
measures,we consider the problems of optimizing the 
reconstruction sectionsof the system, choosing the optimal 
base sampling rate, and designingthe nonuniform sampling 
pattern. Optimizingthese parameters can improve system 
performance significantly.Furthermore, uniform sampling is 
optimal for signals withthat tiles under translation. For signals 
with nontiling , whichare not amenable to efficient uniform 
sampling, the results revealincreased error sensitivities with 
sub-Nyquist sampling. However,these can be controlled by 
optimal design, demonstrating thepotential for practical 
multifold reductions in sampling rate. 
 

 
Fig. 1. Cognitive Radio Transceiver Architecture. 

 
 
Moshe Mishali and Yonina C. Eldar, (2007) [14], address 
the problem of reconstructing a multi-band signal from its sub-
Nyquist point-wise samples. All reconstruction methods 
proposed for this class of signals assumed knowledge of the 
band locations. Butthis work develop a non-linear blind 
perfect reconstruction scheme for multi-band signals which 
does not require the band locations. This approach assumes an 
existing blind multi-coset sampling method. The sparse 
structureof multi-band signals in the continuous frequency 
domain is used to replace the continuous reconstruction witha 
single finite dimensional problem without the need for 
discretization. The resulting problem can be formulatedwithin 
the framework of compressed sensing, and thus can be solved 
efficiently using known tractable algorithmsfrom this 

emerging area. This  also develop a theoretical lower bound on 
the average sampling rate required forblind signal 
reconstruction, which is twice the minimal rate of known-
spectrum recovery. This method ensuresperfect reconstruction 
for a wide class of signals sampled at the minimal rate. 
Numerical experiments are presenteddemonstrating blind 
sampling and reconstruction with minimal sampling rate. 
 
Yvan Lamelas Polo, Ying Wang, Ashish Pandharipande, 
and Geert Leus, (2009) [15], presented a compressive wide-
band spectrum sensing scheme for cognitive radios. The 
received analog signal at the cognitive radiosensing receiver is 
transformed in to a digital signal using ananalog-to-
information converter. The autocorrelation of this compressed 
signal is then used to reconstruct an estimate of the signal 
spectrum. Then evaluate the performance of this scheme in 
terms ofthe mean squared error of the power spectrum density 
estimate and the probability of detecting signal occupancy. 
 
It presented a compressive wide-band spectrum sensing 
schemewherein an AIC operates on the received analog signal. 
Spectrumestimation is done based on CS reconstruction using 
the auto correlation vector of the resulting compressed signal. 
The spectrumestimate was used to determine the spectrum 
occupancy of the licensed system. Performance evaluation 
using MSE and probability of detection showed that the 
proposed scheme performs comparably to the scheme based 
on Z. Tian and G. B. Giannakis[16]. The loss in incoherence 
thus does not substantially affect spectrum estimation and 
spectrum occupancy detection. 
 
ZhiTian, et. al. (2012) [17],developed robust and compressive 
wideband spectrum sensing techniques by exploiting the 
unique sparsity property of the two-dimensional cyclic spectra 
of communications signals. For this, a new compressed 
sensing framework is proposed for extracting useful second-
order statistics of wideband random signals from digital 
samples taken at sub-Nyquist rates. The time-varying cross-
correlation functions of these compressive samples are 
formulated to reveal the cyclic spectrum, which is then used to 
simultaneously detect multiple signal sources over the entire 
wide band. Because the proposed wideband cyclic 
spectrumestimator utilizes all the cross-correlation terms of 
compressive samples to extract second-order statistics, it is 
also able to recover the power spectra of stationary signals as a 
special case, permitting lossless rate compression even for 
non-sparse signals. Simulation results demonstrate the 
robustness of the proposed spectrum sensing algorithms 
against both sampling rate reduction and noise uncertainty in 
wireless networks. 
 
3. Methodology: 
Step 1: Antenna signal modelling 
We consider an array of M sensors located in the wave field 
generated by d narrow-band point sources. Let a(θ) bethe 
steering vector representing the complex gains from one 
source at location θ to the M sensors. Then, if x(t) is the 
observation vector of size M × 1, s(t) the emitted vector signal 
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of size d ×1, and n(t) the additive noise vector of size M×1,we 
obtain the following conventional model: 

x(t) = As(t) + n(t) = y(t) + n(t), (1) 
 

Step 2:Multi-band signals Formulation: 
Multi-band signals are band limited signals that posses an 
additional structure in the frequency domain. The spectral 
support of a multi-band signal is restricted to several 
continuous intervals. Each of these intervals is called a band 
and it is assumed that no information resides outside the 
bands. The design of sampling and reconstruction systems for 
these signals involves three major considerations. One is the 
sampling rate. The other is the set of multi-band signals that 
the system can perfectly reconstruct. The last one is blindness, 
namely a design that does not assume knowledge of the band 
locations. Blindness is a desirable property as signals with 
different band locations are processed in the same way. 
Landau [27] developed a minimal sampling rate for an 
arbitrary sampling method that allows perfect reconstruction. 
For multi-band signals, the Landau rate is the sum of the band 
widths, which is below the corresponding Nyquist rate. 
Uniform sampling of a real bandp ass signal with a total width 
of 2B Hertz on both sides of the spectrum wasstudied in [2]. It 
was shown that only special cases of band pass signals can be 
perfectly reconstructed from their uniform samples at the 
minimal rate of 2B samples/sec. 
 
Step 3: Minimal sampling rate determination: 
We begin by quoting Landau’s theorem for the minimal 
sampling rate of an arbitrary sampling method thatallows 
known-spectrum perfect reconstruction. It is then proved that 
blind perfect-reconstruction requires a minimal sampling rate 
that is twice the Landau rate. 
 
Step 4: Unknown Spectrum Support Development 
Consider the set N of signals bandlimited to F with bandwidth 
occupation no more than 0 << 1, so that 
 

흀 퐬퐮퐩퐩 퐗(퐟)  ≤  훀
퐓

,   ∀ 퐱(퐭) ∈ 퐍Ω 

 
The Nyquist rate for N is 1/T. Note that N is not a subspace so 
that the Landau theorem is not valid here.Nevertheless, it is 
intuitive to argue that the minimal sampling rate for N cannot 
be below T as this value isthe Landau rate had the spectrum 
support been known.A blind sampling set R for N is a 
sampling set whose design does not assume knowledge of 
suppX(f). 
 
Step 5:  Multi-coset sampling Structures Generation  
This section reviews multi-coset sampling which is used in our 
development. We also briefly explain thefundamentals of 
known-spectrum reconstruction as derived in [8]. 
Uniform sampling of x(t) at the Nyquist rate results in samples 
x(t = nT) that contain all the informationabout x(t). Multi-
coset sampling is a selection of certain samples from this grid. 
The uniform grid is divided intoblocks of L consecutive 
samples. A constant set C of length p describes the indices of 

p samples that are kept ineach block while the rest are zeroed 
out. The set C = {ci}pi=1 is referred to as the sampling pattern 
where 
 

0 ≤ c1 ≤ c2 ≤ ............ ≤ cp ≤ L-1 
 
Step6: Running Statistical tests for significant Eigen-value 
determination: 
According to (1), the noiseless observations y(t) are a 
linearcombination of a(θ1), . . . , a(θd). Assuming independent 
source amplitudes s(t), the random vector y(t) spans thewhole 
subspace generated by the steering vectors. This is the“signal 
subspace.” Assuming d < M and no antenna ambiguity,the 
signal subspace dimension is d, and consequentlythe number 
of nonzero Eigenvalues of Ryis equal to d, with(M − d) 
Eigenvalues being zero.Now, in the presence of white noise, 
according to (2), Rx has the same eigenvectors as Ry, with 
Eigenvalues λx = λy+σ2and the smallest (M−d) Eigen values 
equal to σ2. Then, fromthe spectrum of Rx with Eigenvalues in 
decreasing order, it becomes easy to discriminate between 
signal and noise Eigenvaluesand order determination would be 
an easy task.In practice, Rx is unknown and an estimate is 
made using Rx = (1/N)Nt=1 x(t)x(t)H, where N is the number 
ofsnapshots available. AsRx involves averaging over the 
number of snapshots available Rx → Rx, as N → ∞, resulting 
inall the noise Eigenvalues being equal to σ2. However, when 
taken over a finite number of snapshots, the sample matrixRx 
!= Rx. In the spectrum of ordered Eigenvalues, the 
“signalEigenvalues” are still identified as the d largest ones. 
But, thenoise Eigenvalues are no longer equal to each other, 
and theseparation between the signal and noise Eigenvalues is 
notclear (except in the case of high SNR, when a gap can 
beobserved between signal and noise Eigenvalues), making 
discriminationbetween signal and noise Eigenvalues a 
difficulttask. 
 
Step 7: Known-spectrum reconstruction  
The presentation of the reconstruction is simplified using CS 
sparsity notation. A vector v is called K-sparse ifthe number of 
non-zero values in v is no greater than K. Using the ℓ0 
pseudo-norm the sparsity of v is expressedas kvk0 ≤ K. We 
use the following definition of the Kruskal-rank of a matrix 
 
4. Result and Discussion: 
The results that are obtained by our channel spectrum sensing 
by subspace estimation algorithm. The fig 2 shows that a 
signal is generated as x(t) having summation of three sinc 
functions at different time delay ‘ti’ and instantaneous 
frequency fi with following parameters: 
 

x(t) = ∑Ei(n)1/2*Bi(n)) * sinc(Bi(n)*(t-ti(n))).* 
exp(2j*pi*fi(n)*t); 

 
fi=[5.2  11.4    16.6] Mega hertz; ti =   [ 12    26    38]; Ei =         
[  4   4.8  3.6  5.2] 
Bi=0.9 ;Fs=20;         ( Sampling frequency ) 
T=0.05 sec;          ( Sample time);LL = 1024;        ( Length of 
signal) 
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t = 0 to 51.5sec ;  ( Time vector representing);NFFT = Next 
power of 2 from length of x  
 

 
Fig 2. Time domain plot of signal x(t) having multiple 

frequencies. 
 

Fig. 3 shows the original noisy signal and the reconstructed 
signal using column restriction matrix. In this figure the MSE 
value is also shown having value of 3.8% approx. We can 
observe that original signal is in blue color with noise and 
reconstructed signal is in red both are complete superimposing 
thus it represents perfect signal reconstruction and the detected 
active channels are 5th,6th,12th,13th,17th and 18th and 
uncertainty ratio of 0.19027. 
Justification of the values of Fs=20MHz and BW=20MHz 
chosen for result analysis: 
 
 The channel bandwidth is considered to be 0.9 MHz 
hence there are approx 20/0.9MHz channels i.e. 22 channels 
are allocated in the frequency range of 0 to 20 MHz at the 
bandwidth of 0.9MHz. Thus the instantaneous frequencies are 
since {5.2  11.4    16.6} MHz so the bandwidth associated 
with these channels are Bi= 4.75     to    5.65,        10.95      to   
11.85 and         16.15   and     17.05 Mhz. The total no. of 
active channels are N=3 thus the maximum channel 
occupancy are Ωmax=Nmax/L=0.135 and maximum number of 
active channels are L=Fs/B=22.The maximum number of 
active channel cells are p=7 for α sub Nyquist factor =p/L and 
α>Ωmax.. 

 
Sampling Frequency Vs Uncertainty Ratio: 
 
In this proposed thesis, the value of sampling frequency that 
we have taken is Fs=20MHz. We took different observation of 
simulations below the value of Fs=20. The graph showed in 
fig. 4, reflects the continuous increase in uncertainty ratio. As 
well as, the value of sampling frequency above Fs=20 MHz 
also gave the regular increase in the value of uncertainty ratio. 
 

Therefore, the relevant result of simulation that we observed 
was in the range of Fs between 15 to 20MHz. So in this 
proposed thesis of wideband spectrum sensing using multi-
coset sampler in cognitive radio, we have chosen the value of 
Fs=20MHz for getting the relevant result of detection of active 
channels with at least value of uncertainty ratio. 
 
 
Bandwidth Vs Uncertainty Ratio: 
 
In this proposed thesis, the value of bandwidth that we have 
taken is B=0.9MHz for detecting the active channels. On 
varying the value of bandwidth, the value of uncertainty ratio 
also varied continuously as shown in fig. 5.  Here the variation 
of bandwidth that we took was of step length 0.2 to 2. We took 
the values of uncertainty ratio at the various values of 
bandwidth below 0.9 and observed that the uncertainty ratio 
varied a lot. On the other hand, uncertainty ratio above 0.9 
was relevant and useful in an opportunistic manner. 
 
So, we took the value of bandwidth 0.9MHz for the detection 
of active channels at least value of uncertainty ratio. 
 
5. Conclusion: 
We suggested a method to reconstruct a multi-band signal 
from its samples when the band locations are unknown. The 
development enables a fully spectrum-blind system where 
both the sampling and the reconstruction stages do not require 
this knowledge. The main contribution is in proving that the 
reconstruction problem can be formulated as a finite 
dimensional problem within the framework of sensing at 
lower sampling rate. Conditions for uniqueness of the solution 
and algorithms to find it were developed based on known 
theoretical results and algorithms and literatures. In addition, 
we proved a lower bound on the sampling rate that improves 
on the Landau rate for the case of spectrum-blind 
reconstruction. One of the algorithms we proposed indeed 
approaches this minimal rate for a wide class of multi-band 
signals characterized by the number of bands and their widths. 
Numerical experiments demonstrated the trade-off between 
the average sampling rate and the empirical success rate of the 
reconstruction. The work composed of a compressive wide-
band spectrum sensing method operates on the received 
analog signal. Spectrum estimation is done based on 
multicoset approach based reconstruction by the use of 
autocorrelation function of the resulting compressed signal. 
The estimated spectrum is applied for detecting the spectrum 
occupancy of the system. Performance evaluation is 
performed by MSE and probability of detection proves that the 
proposed scheme performs comparably to the other past 
scheme. It proves that loss in incoherence due to lower 
sampling rate does not significantly distort the spectrum 
estimation and spectrum occupancy measurements. 
 
 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

|x
(t)

|

http://www.ijrdase.com


International Journal of Research and Development in Applied Science and Engineering (IJRDASE) 
ISSN: 2454-6844 

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017 
All Rights Reserved © 2017 IJRDASE 

 
Fig. 3. Reconstructed signal obtained using the interpolation in frequency domain (top) and time domain (bottom). 

 

 
Fig. 4. Graph of variation of Uncertainty Ratio on 
changing the Sampling Frequency 
 

 

 
Fig. 5. The graph of variation of uncertainty ratio vs 
bandwidth 
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