
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

Model for Software Testing and Quality Assessment
using ANN Approach

Abstract--Almost 50% of the software production
development cost is expended in software testing. It
consumes resources and adds nothing to the product in
terms of functionality. Therefore, much effort has been
spent in the development of automatic software testing
tools in order to significantly reduce the cost of
developing software. One objective of software testing is
to find errors and program structure faults. Therefore, a
systematic testing system has to differentiate good
(suitable) test data from bad test (unsuitable) data, and
so it should be able to detect good test data if they are
generated. Artificial neural networks (ANNs) have been
used in the past to handle several aspects of software
testing. Experiments have been conducted to evaluate the
effectiveness of generating test cases capable of exposing
faults, Here prediction model is going to be developed
using software failure data. As failure occurrences
initiate the removal of faults, engineers reported failure
times and time between failures (TBF). Both have been
used to find the mean time between failures (MTBF),
which is then used to investigate the reliability growth.
In the present work feed forward neural network with
back propagation learning algorithm, as an automated
agent has been successfully implemented. The
observations conclude that neural network model
performs better in terms of less error in prediction as
compared to existing analytical models and hence it is a
better alternative to do software testing and quality
assessment.

Key Words: Software Testing, ANN, TBF, MTBF, Failure
Rate

1. Introduction
Almost 50% of the software production development cost is
expended in software testing. It consumes resources and
adds nothing to the product in terms of functionality.
Therefore, much effort has been spent in the development of
automatic software testing tools in order to significantly
reduce the cost of developing software [1]. Software testing
is one of the main feasible methods to increase the
confidence of the programmers in the correctness and
reliability of software. The main goal of software testing is
to increase one’s confidence in the correctness of the
program being tested. In order to test software, test data
have to be generated and some test data are better at finding
errors than others. Therefore, a search algorithm of a tool
must decide where the best values (test data) lie and
concentrate its search there.

Artificial neural networks (ANNs) have been used in the
past to handle several aspects of software testing.
Experiments have been conducted to evaluate the
effectiveness of generating test cases capable of exposing
faults, to use principle components analysis to find faults in
a system, [5] to compare the capabilities of neural networks
to other fault-exposing techniques,[4] [6] and to find faults
in failure data. Hence prediction model is going to be
developed using software failure data. As failure
occurrences initiate the removal of faults, engineers reported
failure times and time between failures (TBF). Both have
been used to find the mean time between failures (MTBF),
which is then used to investigate the reliability growth.
Models that discuss the behaviour of MTBF are called
SRMs.
For failure rate prediction model development a new
application of neural networks as an automated “Agent” for
a tested system has been presented. A multi-layer neural
network is trained on the original software application by
using randomly generated test data that conform to the
specification. The neural network can be trained within a
reasonable accuracy of the original program, though it may
be unable to classify the test data 100 percent correctly. In
effect, the trained neural network becomes a simulated
model of the software application.

2 Literature Review
On reviewing literature, it is found that supervised,
semisupervised and unsupervised learning approaches have
been used for building a fault prediction models. Among
these, supervised learning approach is widely used and
found to be more useful FP module prediction if sufficient
amount of fault data from previous releases are available.
Generally, these models use software metrics of earlier
software releases and fault data collected during testing
phase. The supervised learning approaches cannot build
powerful models with limited data. Unsupervised learning
approaches such as clustering methods can be used in the
absence of fault data. In most cases, software metrics and
fault data obtained from a similar project or system release
previously developed are used to train a software quality
model. Below is given a brief review of the work done by
many workers in the above filed of defect prediction with
the objective of finding out future strategies in this field.
Norman Fenton et.al.(1999), have described a probabilistic
model for software defect prediction. The aim here is to
design a model which is a combination of diverse forms that
may be often casual, with available evidence in development
of software so that the work can be done in more natural and

Khushter Kaifi
Department of CSE

Shri Venkateshwara University
k.kaifi@hotmail.com

Dr. Anshu Srivastava
Department of CSE

Shri Venkateshwara University
anshuqrat114@gmail.com

Dr. Qamar Parvez Rana
Dept of Computer Center

Jamia Hamdard University
 qprana@jamaihamdard.ac.in

http://www.ijrdase.com
mailto:k.kaifi@hotmail.com
mailto:anshuqrat114@gmail.com
mailto:qprana@jamaihamdard.ac.in

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

efficient manner than it was previously done. Ahmet
Okutan, et.al.(2012), proposed a novel method using
Bayesian networks to explore the relationships among
software metrics and defect proneness. Mrinal Singh Rawat
et. al.(2012), identified causative factors which in turn
suggest the remedies to improve software quality and
productivity. They showed how the various defect prediction
models are implemented resulting in reduced magnitude of
defects. Manu Banga, (2013), here a new computational
intelligence sequential hybrid architectures involving
Genetic Programming (GP) and Group Method of Data
Handling (GMDH) viz. GPGMDH have been discussed.
Mohamad Mahdi Askari and Vahid Khatibi Bardsiri (2014)
for the prediction of software defects used artificial neural
network in order to better the generalization capability of the
algorithm. Mrs.Agasta Adline, Ramachandran. M(2014)
Predicting the fault-proneness of program modules when the
fault labels for modules are unavailable is a challenging task
frequently raised in the software industry. They attempted to
predict the fault–proneness of a program modules when fault
labels for modules are not present. K.Venkata Subba Reddy
and Dr.B.Raveendra Babu (2013) we propose a software
reliability growth model, which relatively early in the testing
and debugging phase, provides accurate parameters
estimation, gives a very good failure behavior prediction and
enable software developers to predict when to conclude
testing, release the software and avoid over testing in order
to cut the cost during the development and the maintenance
of the software.

3. Dataset Used
Failure data during system testing phase of various projects
collected at Bell Tele-phone Laboratories, Cyber Security
and Information Systems In-formation Analysis
Centre(CSIAC) by John D. Musa are considered.
Five numbers of application software testing data set for
demonstration of predictive performance and prediction
accuracy as shown in Table 1 has been considered. 70% of
each dataset is used for training the model and the rest
failure data is used for validating the model. The datasets are
downloaded from
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html.

Table 1: Table of different software failure datasets used

Proj
ect

Cod
e

Project
Name

No. of
Failur

es

Develop
ment

Phases

SYS
1

Real
Time
Comman
d &
Comman
d System 136

System
Test
Operatio
ns

SS3

Real
Time
Comman
d &
Comman
d System 278

System
Test
Operatio
ns

CSR Real 397 System

1 Time
Comman
d &
Comman
d System

Test
Operatio
ns

SS4

Real
Time
Comman
d &
Comman
d System 197

System
Test
Operatio
ns

SYS
3

Real
Time
Comman
d &
Comman
d System 207

System
Test
Operatio
ns

4 Model Inputs and Structure
One among the foremost important steps within the
development of any prediction model is that the choice of
suitable input variables that may enable any classification
model to successfully produce the specified results. In the
present work for two types of prediction models have been
developed.

MODEL-I
One is the development of Cumulative Time Between
Failure (CTBF) prediction model, using FFNN algorithm,
with Cumulative number of Failures is taken as input and
Cumulative Time Between Failure (CTBF) is taken as
output variable. Here five different prediction models have
been developed using five different datasets. The
nomenclature used are as follows;

Table 2: Structure of Forecasting model both for Model-

1

Project
Code

Model
Nomenclature

Used

Input
Variables

Output
Variable

SYS1 M1-SYS1 No. of Failures CTBF

SS3 M1-SS3 No. of Failures CTBF

CSR1 M1-CSR1 No. of Failures CTBF

SS4 M1-SS4 No. of Failures CTBF

SYS3 M1-SYS3 No. of Failures CTBF

MODEL-II
Taking y(t1),y(t2),y(t3)…y(tk) as inputs to the neural
network and Predicting y’(t(k+1)) as output(where y(t(k+1))
is taken as target value) is known as short term prediction or
1-step ahead prediction.
Thus the nomenclature used for different models are
tabulated as below.

Table 3: Structure of Forecasting model both for Model-2

Project
Code

Model
Nomenclatur

e Used

Input
Variables

Output
Variable

http://www.ijrdase.com
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

SYS1 M2-SYS1

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

SS3 M2-SS3

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

CSR1 M2-CSR1

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

SS4 M2-SS4

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

SYS3 M2-SYS3

CTBF(t-2),
CTBF(t-1),
CTBF(t)

CTBF(t+1)

5 Artificial Neural Network (ANN) Model Development
The various steps involved in the development of optimum
prediction model are given below.

5.1 Model Selection
In the present work optimal network geometry was
investigated, using trial and error approach as discussed
earlier, in an attempt to create more optimum model. The
number of hidden nodes was used to guide the trial and error
search approach for the optimal geometry [8]; however since
an optimum model has been sought, only models containing
less than ten hidden nodes were considered. Thus to
minimise the number of networks that required training and
testing, ANN’s containing 1 to 10 nodes were considered in
order to narrow down the search. Once this range was
determined, the trial and error approach was repeated, with
the number of hidden nodes increasing in increment of one
from minimum nodes onwards. Finally the optimum nodes
were found for the best developed network and the networks
on either side of the best developed network were also tested
(if the model with the best generalisability contained 6
hidden nodes, networks with 5 and 7 hidden nodes were also
tested). As mentioned in earlier, all the ANN models
developed in this research contained a single hidden layer
with sigmoid logistic activation function in the hidden nodes
and output node. The number of nodes in the input layer has
been kept fixed to three in all the six models considered
[8][9].

5.2 Training
Training is the process by which the weights of an ANN are
estimated, by using an iterative procedure to minimise a
predetermined error, or objective function, such as the
MSE. Therefore, ANN training is essentially a nonlinear
least squares problem, which can be solved using standard
nonlinear least squares methods. Here in this work Back-
Propagation algorithm has been used for training the Feed
Forward Neural Network architecture [10]. Once the
training is complete, the weights are frozen. Training is the
only time data is back propagated through the network.
During recall, the network is strictly feed forward.
Initially the training data set was fed to the network for the
development of the optimum model, keeping the initial
weights as small and randomly distributed. The number of

nodes was initially kept to one and was gradually increased
in increment of one till ten nodes were reached and
simultaneously monitoring the network performance. The
learning rate was also initially kept to minimum and slowly
increased. Also as discussed earlier in chapter 3, in order to
resolve the contradiction of using slow or high learning rate
(), a momentum () term was introduced which provided
a built in inertia allowing a slow learning rate but faster
learning. Thus various permutation and combinations of
both these factors were used during the training process. The
fixed period stops of 1000 cycles was used for training the
network and the target error was set to stop during training
when the average error reaches below 0.00999.
Model parameter values for Back Propagation Algorithm are
given below in table 4.

Table 4: Range of Model parameter values for Back

Propagation Algorithm for all the models
Parameters Range of values
Training Function ‘trainlm’
Adaptation Learning
Function

‘learnGD’

Training mode Supervise
Gradient mode Jacobian
Performance
Function

MSE, SSE,
MAE

Transfer Function For Hidden layer
– tansigmoid
For output layer
- linear

Number of Hidden
nodes

2-5

Learning Rate () 0.1 to 0.9
Momemtum () 0.1 to 0.9
No. of epochs 100

Various network architectures were investigated in order to
determine the optimal MLP architecture (i.e. the lowest
mean square error and the optimum regression value) for the
given combination of sixteen input variables. Different
training algorithms were used with changes in the number of
neurons in the hidden layers. In addition, the effect of
transfer functions i.e. tangent sigmoid in the hidden layer
were also investigated.

6. Results and Discussions:
(A) Comparison of ANN models
Both the models M1 and M2 as given above in table 2 and 3
having one and three input variables respectively and one
output variable with one hidden layer, were subjected to
feed forward neural network with back propagation learning
algorithm and sigmoid logistic activation function. Various
permutations and combinations of network parameters viz.
learning rate (), momentum () and number of hidden
layer nodes were carried out for the development of the
optimum network.

Model-1 (using only two variables)
Given below in Table 5 are the error values for best
developed Model-1 obtained using 1-5-1 network

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

configuration for both the datasets. Further Fig. 1 shows the
comparative error plots for all the six dataset models. From
the perusal of the figure it is seen that the network model 1-
5-1 for datasets M1-SYS3 has least error as compared to all
the other models.

Table 5: Performance Evaluation results of M1 Models

Model
No. MAE MSE SSE

Best Val.
Perf.

M1-SYS1
0.025

9 0.0013
0.079

8 0.0019

M1-SS3
0.023

3
0.00085

5
0.090

7 0.000852

M1-CSR1
0.019

1
0.00065

1
0.097

6 0.000629

M1-SS4
0.021

2 0.00075
0.052

5 0.00075622

M1-SYS3
0.018

3
0.00054

2
0.040

6 0.00081199

Fig. 1: MAE Plot for M-1 models

ModeL-2 (using four variables)
Next, Table4.5 depicts the error values for best developed
Model-2 obtained using 3-5-1 network configuration for all
the datasets. Fig. 2 shows the comparative error plot for
these datasets. From the perusal of these figures it is seen
that the network model 3-5-1 for datasets M2-CSR1 has
least error as compared to other models.

Table 6: Error Values for Model-2

Model
No. MAE MSE SSE

Best Val.
Perf.

M2-SYS1
0.020

2
0.00090

4
0.054

2 0.000482

M2-SS3
0.020

4
0.00071

2
0.075

5 0.0007873

M2-CSR1
0.012

8
0.00029

3
0.043

9 0.0004124

M2-SS4 0.022
0.00080

4
0.060

3 0.0007702

M2-SYS3
0.025

3 0.0012
0.064

8 0.0021129

Fig. 2: MAE Plot for M-2 models

Comparative Analysis Of Model-1 & Model-2
A comparative error plots of both the models using one and
three input variables is given in figures 3 to 4 below.

Fig. 3: MAE Plot for M-1 & M-2 models

Fig. 4: MSE Plot for M-1 & M-2 models

0

0.005

0.01

0.015

0.02

0.025

0.03 0.0259
0.0233

0.0191
0.0212

0.0183

MAE

0

0.005

0.01

0.015

0.02

0.025

0.03

M2-SYS1 M2-SS3 M2-CSR1 M2-SS4 M2-SYS3

0.0202 0.0204

0.0128

0.022

0.0253
MAE

0

0.005

0.01

0.015

0.02

0.025

0.03

SYS1 SS3 CSR1 SS4 SYS3

MAE
MOD
EL-1

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

SYS1 SS3 CSR1 SS4 SYS3

MSE
MOD
EL-1

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

Fig. 5: Depicts the training of NN Model gauged by MSE
for N=5 using Levenberg-Marquardt training algorithm

with Gradient Descent with momentum as training
function for M1-SYS3 Model

Fig. 6: Regression Plot during training for M1-SYS3

Model

M2-CSR1 (Using four variables)

Fig. 7: Depicts the training of NN Model gauged by MSE
for N=5 using Levenberg-Marquardt training algorithm

with Gradient Descent with momentum as training
function for for M2-CSR1 Model

Fig. 8: Regression Plot during training for M2-CSR1

Model

Once the training process is complete and the results are
obtained, then their accuracy is ascertained by using the
testing data such that the predicted results are very close to
the observed ones. Figure 5 and Fig. 8 shows the regression
plot of training, testing and validation results for the best
developed MI-SYS3 and M2-CSR1 using one and three
input variables respectively, whereas on the other hand
figures 6 and Fig. 7 demonstrates the plot of MSE for the bet
developed ANN model, i.e. 1-5-1 and 3-5-1, using
Levenberg Marquardt training algorithm for best developed
M1-SYS3and M2-CSR1 Models. For finding the accuracy
of the models during training, testing and validation stage,
MSE criteria is used. As seen from figures 5 and 7 the
performance in case of both the models improved even
when the network error was low. It was noticed that in case
of M1-SYS3 initially there was sharp fall in the nerwork
error and at epoch 5 errors for training, testing and
validation datasets got saturated and best validation result
was obtained as 0.00081199 at epoch number 89, while in
case of M2-CSR1 Model, though the initial fall in error
values was the same but around epoch 10 it got saturated
and the best validation result obtained was 0.0004124 at
epoch number 169. The network model 1-5-1 and 3-5-1,
which are the best can be considered as the best selection of
network topology. This topology is able to maintain the
number of layers, processing elements, generalization
characteristics. This also can be seen that the training time
elapsed has also been reduced due to less iteration required
as each time.

7 Conclusions
In the present work feed forward neural network with back
propagation learning algorithm, as an automated agent has
been successfully implemented. The observations conclude
that neural network model performs better in terms of less
error in prediction as compared to existing analytical models
and hence it is a better alternative to do software testing and
quality assessment. As the connection weights are randomly
initialized, thus the neural network gives different results for
the same datasets and thus the performance of the network
varies. The neural network is shown to be a promising
method of testing a software application provided that the
training data have a good coverage of the input range. The
back propagation method of training the neural network is a

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

 Available online at: www.ijrdase.com Volume 14, Issue 1, July 2017
All Rights Reserved © 2017 IJRDASE

relatively rigorous method capable of generalization, and
one of its properties ensures that the network can be updated
by learning new data. As the software that the network is
trained to simulate is updated, so too can the trained neural
network learn to classify the new data. Thus, the neural
network is capable of learning new versions of evolving
software.

References:
[1] Jogi John, (2011), “A Performance Based Study of
Software Testing using Artificial Neural Network”,
International Journal of Logic Based Intelligent Systems,
Vol. 1, No. 1, PP. 45-60.
[2] Voas JM, Miller KW. “Software Testability: The New
Verification”. IEEE Software; 1995.
Voas JM, McGraw G. Software Fault Injection; 1998.
[3] Khoshgoftaar TM, Allen EB, Hudepohl JP, Aud SJ.
“Application of Neural Networks to Software Quality
Modeling of a Very Large Telecommunications System”.
IEEE Transactions on Neural Networks 1997; 8(4): 902-
909.

[4] Khoshgoftaar TM, Szabo RM., “Using Neural Networks
to Predict Software Faults During Testing”. IEEE
Transactions on Reliability 1996; 45(3): 456-462.
[5] Kirkland LV, Wright RG. “Using Neural Networks to
Solve Testing Problems”. IEEE Aerospace and Electronics
Systems Magazine 1997; 12(8):36-40.
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html.
[6] Kingston, G.B., (2006), “Bayesian Artificial Neural
Network in Water Resources Engineering”, P.hd. Faculty of
Engineering, Computer and Mathematical Science. The
University of Adelaide.
[7] Eklund, J. And KapetanioS, G., (2008), “A Review of
Forecasting Techniques for Large Datasets”. Working paper
no. 625.
[8] Maier, H.R., (1995), “A review of Artificial Neural
Network.”, Research Report no. R131. Dept. of Civil and
Env. Engg. The University of Adelaide.
[9] Zhang, G. P., (2003), Time series forecasting using a
hybrid ARIMA and neural network model, Neuro
computing, 50, pp 159–175.

http://www.ijrdase.com
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html.

