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PSO based Optimized Software Testing Technique 
 
 
 

Abstract: Regression testing is an expensive, but important, 
process. Unfortunately, there may be insufficient resources to 
allow for the re–execution of all test cases during regression 
testing. In this situation, test case prioritisation techniques aim 
to improve the effectiveness of regression testing, by ordering 
the test cases so that the most beneficial are executed first. 
Previous work on regression test case prioritisation has 
focused on Greedy Algorithms. However, it is known that 
these algorithms may produce sub–optimal results, because 
they may construct results that denote only local minima 
within the search space. By contrast, meta–heuristic and 
evolutionary search algorithms aim to avoid such problems. 
This paper presents results from an empirical study of the 
application of several greedy, meta–heuristic and evolutionary 
search algorithms to six programs, ranging from 374 to 11,148 
lines of code for 3 choices of fitness metric. The paper 
addresses the problems of choice of fitness metric, 
characterisation of landscape and determination of the most 
suitable search technique to apply. The empirical results 
replicate previous results concerning Greedy Algorithms. 
They shed light on the nature of the regression testing search 
space, indicating that it is multi–modal. The results also show 
that Genetic Algorithms perform well, although Greedy 
approaches are surprisingly effective, given the multi–modal 
nature of the landscape. 
Keywords: APFD, APBC, APDC, Genetic Algorithm, and 
PSO. 
 
1. Introduction: 
Regression testing is a frequently applied but expensive 
maintenance process that aims to (re-)verify modified 
software. Many approaches for improving the regression 
testing processes have been investigated. Test case 
prioritisation [17] is one of these approaches, which orders test 
cases so that the test cases with highest priority, according to 
some criterion (a ‘fitness metric’), are executed first. 
Rothermel et al. [11] define the test case prioritisation problem 
and describe several issues relevant to its solution. The test 
case prioritisation problem is defined (by Rothermel et al.) as 
follows: The Test Case Prioritisation Problem: 
 
Given: T,a test suite;PT, the set of permutations of T; f, a 
function from PT to the real numbers. 
Problem: Find T'ᅡPT such that ( ∀ܶ ′′(ܶ ′′ ∈ ܲܶ)(ܶ ′′ ≠
ܶ ′)[݂(ܶ ′) ≥ ݂(ܶ ′′)] 
Here, PT represents the set of all possible prioritisations 
(orderings) of T and f is a function that, applied to any such 
ordering, yields an award value for that ordering. Test case 

prioritisation can address a wide variety of objectives [11]. For 
example, concerning coverage alone, testers might wish to 
schedule test cases in order to achieve code coverage at the 
fastest rate possible in the initial phase of regression testing, to 
reach 100% coverage soonest or to ensure that the maximum 
possible coverage is achieved by some pre–determined cut–off 
point. Of course, the ideal order would reveal faults soonest, 
but this cannot be determined in advance, so coverage often 
has to serve as the most readily available surrogate. In the 
Microsoft Developer Network (MSDN) library, the 
achievement of adequate coverage without wasting time is a 
primary consideration when conducting regression tests [10]. 
Furthermore, several testing standards require branch adequate 
coverage, making the speedy achievement of coverage an 
important aspect of the regression testing process. In previous 
work, many techniques for regression test case prioritisation 
have been described. Most of the proposed techniques were 
code–based, relying on information relating test cases to 
coverage of code elements. In [11], Rothermel et al. 
investigated several prioritising techniques such as total 
statement (or branch) coverage prioritisation and additional 
statement (or branch) coverage prioritisation, that can improve 
the rate of fault detection. In [13], Wong et al. prioritised test 
cases according to the criterion of ‘increasing cost per 
additional coverage’. In [12], Srivastava and Thiagarajan 
studied a prioritisation technique that was based on the 
changes that have been made to the program and focused on 
the objective function of “impacted block coverage”. Other 
non–coverage based techniques in the lit-erature include fault–
exposing–potential (FEP) prioritisation [11], history–based 
test prioritisation [11], and the incorporation of varying test 
costs and fault severities into test case prioritisation [5, 6]. 
Greedy Algorithms have been widely employed for test case 
prioritisation. Greedy Algorithms incrementally add test cases 
to an initially empty sequence. The choice of which test case 
to add next issimple: it is that which achieves the maximum 
value for the desired metric (e.g., some measure of coverage). 
 
2. Related Work: 
This work aims to find optimization techniques for test suite 
optimization (TSO) in Regression testing(R/T). [1]. Zheng Li, 
have studied various optimization techniques and algorithms 
in order to find the technique that should be used for test suite 
optimization (TSO) in regression testing. The techniques like 
hill climbing, greedy algorithm, additional greedy algorithm,2-
optimal greedy algorithm, genetic algorithm, particle swarm 
optimization(PSO) are studied and compared using different 
parameters. These techniques are compared on the basis of 
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their code coverage area, computational effort and execution 
time. 
 
Where the creation, understanding, and assessment of software 
testing and regression testing techniques are concerned, 
controlled experimentation is an indispensable research 
methodology. Obtaining the infrastructure necessary to 
support such experimentation, however, is difficult and 
expensive. As a result, progress in experimentation with 
testing techniques has been slow, and empirical data on the 
costs and effectiveness of techniques remains relatively 
scarce. To help address this problem, [2] V. Basili, have been 
designing and constructing infrastructure to support controlled 
experimentation with testing and regression testing techniques. 
This work reports on the challenges faced by researchers 
experimenting with testing techniques, including those that 
inform the design of our infrastructure. The work then 
describes the infrastructure that we are creating in response to 
these challenges, and that we are now making available to 
other researchers, and discusses the impact that this 
infrastructure has and can be expected to have. 
 
This survey has presented by [3]. Agrawal G. on empirical 
work involving program slicing of relatively large scale 
programs (ranging from a few thousand lines of code to tens 
and even hundreds of thousands of lines of code). The results 
concern questions about the efficacy of slicing, its 
applications, the nature of the slices themselves, and the 
interplay between slicing and other source code analyses. 
Results from over thirty works, that contain empirical results 
are included. Some general trends in the results reported are 
evident and also some directions for future work emerge. 
 
[4]. T. Abdel-Hamid presented a search{based approach for 
planning resource allocation in large software projects, which 
aims to find an optimal or near optimal order in which to 
allocate work packages to programming teams, in order to 
minimize the project duration. The approach is validated by an 
empirical study of a large, commercial Y2K massive 
maintenance project, comparing random scheduling, hill 
climbing, simulating annealing and genetic algorithms, 
applied to two different problem encodings. Results show that 
a genome encoding the work package ordering, and alertness 
function obtained by queuing simulation constitute the best 
choice, both in terms of quality of results and number of 
fitness evaluations required to achieve them. 
 
Regression testing assures changed programs against 
unintended amendments. Rearranging the execution order of 
test cases is a key idea to improve their effectiveness. 
Paradoxically, many test case prioritization techniques resolve 
tie cases using the random selection approach, and yet random 
ordering of test cases has been considered as ineffective. 
Existing unit testing research unveils that adaptive random 
testing (ART) is a promising candidate that may replace 
random testing (RT). In this work, [5]. K. P. Chan, not only 
propose a new family of coverage-based ART techniques, but 
also show empirically that they are statistically superior to the 

RT-based technique in detecting faults. Furthermore, one of 
the ART prioritization techniques is consistently comparable 
to some of the best coverage-based prioritization techniques 
(namely, the “additional” techniques) and yet involves much 
less time cost. Test case prioritization is a means to achieve 
target objectives in software testing by reordering the 
execution sequences of test suites. Many existing test case 
prioritization techniques use random selection to resolve tie 
cases. Paradoxically, the random approach for test case 
prioritization has a long tradition to be deemed as ineffective. 
Adaptive random testing (ART), which aims to spread test 
cases as evenly and early as possible over the input domain, 
has been proposed for test case generation. Empirical results 
have shown that ART can be 40 to 50% more effective than 
random testing in revealing the first failure of a program, 
which is close to the theoretical limit. In regression testing, 
however, further refinements of ART may be feasible in the 
presence of coverage information. 
 
3. Methodology: 
Particle Swarm Optimization (PSO) is an evolutionary 
computation technique, which is inspired by flocks of birds 
and shoals of fish. In PSO, a number of simple entities ( the 
particles) are placed in the space of some problem and each 
evaluates its fitness as its current location. Each particle 
determines its movement through the space by considering the 
particle which had the best fitness and the history of its own, 
then it moves with a velocity. At last, the swarm is liable to 
move near the best area. The speed and position of every 
molecule is balanced by the accompanying formulas: 

Vid =WXVid + c1Xrand()X(Pid-Xid)+C2XRand()X(Pad-Xid) 
Xid =Xid + Vid 

where c1 and c2 are termed the cognitive and social learning 
rates. These two parameters control the relative importance of 
the memory of the particle itself to the memory of the 
neighborhood. The variable rand() and Rand() are two random 
functions that is uniformly distributed in the range [0,1]. Xi = 
(Xi1, Xi2, … , XiD) represents the ith particle. Pi = (Pi1, Pi2, 
…, PiD) represents the best previous position of the ith 
particle. The symbol g represents the index of the best particle 
among all the particles. Vi = (Vi1, Vi2, … , ViD) represents 
the velocity of the ith particle. Variable is the inertia weight. 
The general process of PSO is as follows. 
 
Do 
Calculate fitness of particle 
Update pbest if the current fitness is better than pbest 
Determine nbest for each particle: choose the particle with the 
best fitness value of all the neighbors as the nbest 
For each particle Calculate particle velocity according to (1) 
Update particle position according to (2) 
While maximum iterations or minimum criteria is not attained 
 
Since the introduction of the PSO algorithm, several 
improvements have been suggested. In 1998, inertia weight 
was first proposed by Shi and Eberhart [9]. The function of 
inertia weight is to balance global exploration and local 
exploitation. In the following year, Clerc proposed the 
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constriction factors to ensure the convergence of PSO [13]. 
Eberhart and Shi compared inertia weight with constriction 
factors and found that the constriction factors was better 
convergence than inertia weight [10]. 
The particle swarm optimization was proposed by Kennedy 
and Eberhart [8, 9]. The PSO is able to solve multidimensional 
optimization problems. It is based on simulating the social 
behavior of swarm of bird flocking, bees, and fish schooling. 
By randomly initializing the algorithm with candidate 
solutions, the PSO successfully leads to a global optimum. 
This is achieved by an iterative procedure based on the 
processes of movement and intelligence in an evolutionary 
system.  
In PSO, each potential solution is represented as a particle. A 
position   and a velocity   are associated with each particle. 
The position and velocity of the ith particle are given by 

పሬሬሬ⃗ݔ = ,.ଶݔ,.ଵݔ) … .ேݔ…  ), 
పሬሬሬ⃗ݒ = ,.ଶݒ,.ଵݒ) … … .ேݒ  ) 

 
Experimental Design 
To improve the generality of the results reported in this paper, 
the basic search experiment was instantiated with several 
values of the three primary parameters that govern the nature 
and outcomes of the search, namely:  
1. The program to which regression testing is applied. Six 
programs were studied, ranging from 374 to 11,148 lines of 
code and including real as well as ‘laboratory’ programs. 
2. The coverage criterion to be optimised.The three choices 
studied were block, decision and statement coverage for each 
program. 
3. The size of the test suite. Two granularities of test suite size 
were used: small suites of size 8 − 155 and large suites of size 
228 − 4, 350. Of course, there is a connection between the first 
and third category since a larger program will typically require 
more test cases. 
 
3.1 Subjects 
In our study we used two groups of programs, called ‘small 
programs’ and ‘large programs’1, from a total of six C 
programs and their corresponding test suites (see Table 1). 
The programs and test suites were from an infrastructure [4], 
that is designed to support controlled experimentation with 
software testing and regression testing techniques. Print 
tokens2 and Schedule2 are variations of the programs Print 
tokens and Schedule, respectively. These programs were 
assembled by researchers at Siemens Corporate Research for 
experiments with control–flow and data–flow test adequacy 
criteria [10]; Space and Sed are large programs. 
 

Table 1: Experimental Subjects 
Subject LoC Blocks Decision Test 

Pool 
size 

Average 
Small 
test 
Suite 
size 

Average 
Large 
test 
Suite 
size 

Print_tokens 726 126 123 4.130 16 318 
Print_tokens2 570 103 154 4.115 12 388 
Schedule 412 46 56 2.650 19 228 
Schedule2 374 53 74 2.710 8 230 

Space 9.564 869 1.068 13.585 155 4.350 
Sed 11.148 951 2.331 1.293  1.293 

 
Space was developed for the European Space Agency, and 
Sed is the Unix stream editor string processing utility. For the 
first four ‘small’ programs, the researchers at Siemens created 
a test pool containing possible test cases for each program 
[10]; Rothermel and his colleagues constructed test pools for 
the two ‘large’ programs following the same approach. 
The infrastructure provided by Rothermel et al. [18] was used 
to obtain test suites in the following manner: in order to 
produce small test suites a test case is selected at random from 
the test pool and is added to the suite only if it adds to the 
cumulative branch coverage. This is repeated until the test 
suite achieves full branch coverage. In order to produce large 
test suites, test cases are randomly selected from the test pool 
and added to the test suite until full branch coverage is 
achieved.  
 
3.2 Effectiveness Measure: 
The fitness metrics studied are based upon APFD (Average of 
the Percentage of Faults Detected) [18], which measures the 
weighted average of the percentage of faults detected over the 
life of the suite. However, it is not (normally) possible to 
know the faults exposed by a test case in advance and so this 
value cannot be estimated before testing has taken place. 
Therefore, coverage is used as a surrogate measure. It is not 
the purpose of this paper to enter into the discussion of 
whether or not coverage is a suitable surrogate for faults 
found. Coverage is also an important concern in its own right, 
due to the way in which it has become a part of ‘coverage 
mandates’ in various testing standards (for example, avionics 
standards [14]). The presence of these mandates means that 
testers must achieve the mandated levels of coverage 
irrespective of whether or not they may believe in coverage 
per se. Depending on the coverage criterion considered, three 
metrics were used in the paper: 
1. APBC (Average Percentage Block Coverage) This 
measures the rate at which a prioritised test suite covers the 
blocks. 
2. APDC (Average Percentage Decision Coverage) This 
measures the rate at which a prioritised test suite covers the 
decisions (branches). 
3. APSC (Average Percentage Statement Coverage) This 
measures the rate at which a prioritised test suite covers the 
statements. 
Consider the APBC metric as an example and a test suite T 
containing n test cases that covers a set B of m blocks. Let TBi 
be the first test case in the order T′ of T that covers block i. 
The APBC for order T′ is given by the equation: 
 

APBC=1- ்భା்మା⋯்


+ ଵ
ଶ

 
 
APBC measures the weighted average of the percentage of 
block coverage over the life of the suite. APBC values range 
from 0 to 100; higher numbers imply faster (better) coverage 
rates. 
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(a) Test Suites and Block Coverage 

 
(b) APBC for order T1 

 
(c) APBC for Order T2 

 
Fig 1: Example Illustrating the APBC Measurer 

 
To illustrate this measure, consider an example program with 
10 blocks and a test suite of 5 test cases, A through E, each 
with block coverage characteristic. Consider two orders of 
these test cases, order T1: A–B–C–D–E, and order T2: C–E–
B–A–D. Figure 3.4(b) and Figure 1(c) show the percentages of 
block coverage as a function of the fraction of the test suite 
used, for the two orders T1 and T2 respectively. The area 
under the curve represents the average of the percentage of 
block coverage over the life of the test suite. APDC and APSC 
are defined in a similar manner to APBC, except that they 
measure rate of coverage of decisions and of statements 
respectively. 
 

4. Result and Discussion: 
Software testing is a frequently applied but expensive 
maintenance process that aims to re–verify modified software. 
Many approaches for improving the testing processes have 
been investigated. Test case prioritisation [1] is one of these 
approaches, which orders test cases so that the test cases with 
highest priority, according to some criterion (a ‘fitness 
metric’), are executed first. Rothermel et al. define the test 
case prioritisation problem and describe several issues relevant 
to its solution. The test case prioritisation problem is defined 
(by Rothermel et al.) as follows: 
Every time software is modified it is required to be tested. 
Test case prioritisation is a black box technique that is used to 
identify bugs that have emerged at the time of software 
modification. This testing depends upon quality of test suites. 
A good quality test suite leads to early fault detection and 
hence improves quality of testing. Test suite optimization 
techniques are used for prioritization, selection and 
minimization of test cases in a test suite. Hill climbing, greedy 
algorithm, additional greedy algorithm,2-optimal greedy 
algorithm, genetic algorithm, particle swarm 
optimization(PSO) are optimization algorithm. Particle swarm 
optimization is a optimization Technique inspired by social 
behaviour of bird flocking. In case of particle swarm 
optimization the next position of a particle depends on its local 
best position and the global best position of the swarm.  
PSO includes following steps: 
1. Create random population of particle. 
2. Find fitness value of each particle in the population. 
3. If particles current position is better than its previous 
position make it personal best (pbest). For first iteration the 
initial position of the particle will be particles best position. 
4. Find the global best (gbest) particle . 
5. Find the new position of the particle with the help of 
personal best and global best position of the particle. 
Change in position of particle is represented as velocity 
update. 
 Vi(t+1)= w*Vi(t)+c1*rand*(pbest-p)+c2*rand*(gbest-p) 
 newP(t+1)=P+Vi(t+1) 
Vi(t+1)-update velocity 
C1-Weight of local information 
C2-Weight of global information 
Rand- 0<=rand<=1 
pbest- Particle personal best position 
gbest- Particle global best position 
6. Move particle to their new position. 
7. Follow the step 3 to 6 . 
8. We stop when no more better particles are found in next 
50(or according to the problem space) iteration. 

 
Test case prioritization: 

Table 2: Test case coverage record 
Test  
Cases 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Line of                
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Code: 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
13 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 
14 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 
15 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 
19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
20 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
21 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
23 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 
24 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 
25 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
 
Table 2 displays the test case coverage with respect to line of 
codes during block coverage. There are 15 test cases are 
applied on 26 code lines. For example column 1 represents 
that test case 1 covers 1to 15,17 ,18 ,20 and 21st  line of code 
indicated by ‘1’ and uncovered lines are 16, 19, 22 to 25 are 
uncovered and indicated by ‘0’. 
 

 
 

Fig. 2: Percentage block coverage and APBC value at 1st 

iteration for test suit represented by particle number 3 
using PSO algorithm. 

Test case selection: 
It is the process of selecting subset of the test suite. The subset 
of test suite is generated depending on the programs that are 
affected by the software modification. Test case selection 

reduces the number of test cases to be executed and thus 
reduces the execution time of the test suite. 

 

 
Fig. 3. Percentage block coverage and APBC value at 4th 

iteration for test suit represented by particle number 5 
using PSO algorithm. 

 
5. Conclusion: 
This work described five algorithms for the sequencing 
problem in test case prioritisation for regression testing. It 
presented the results of an empirical study that investigated 
their relative effectiveness. The data and analysis indicate that 
the Greedy Algorithm performs much worse than Additional 
Greedy, 2–Optimal and Genetic Algorithms overall. Also, the 
2–Optimal Algorithm overcomes the weakness of the Greedy 
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Algorithm and Additional Greedy Algorithm (see Table 1) 
referred to by previous authors. However, the experiments 
indicate that, in terms of effectiveness, there is no significant 
difference between the performance of the 2–Optimal and 
Additional Greedy Algorithms. This suggests that, where 
applicable the cheaper–to–implement–and–execute Additional 
Greedy Algorithm should be used. The choice of coverage 
criterion does not affect the efficiency of algorithms for the 
test case prioritization problem. 

 
Fig. 4. Percentage block coverage and APBC value at 5th 

iteration for test suit represented by particle number 7 
using PSO algorithm. 

 
The size of the test suite determines the size of the search 
space, therefore affecting the 30 complexity of test case 
prioritisation problem. The size of the program does not have 
a direct effect, but increases the difficulty of computing fitness 
values. Studies regarding the performance of meta–heuristic 
algorithms led to several conclusions that have practical 
ramifications. The results produced by Hill Climbing show 
that the nature of the fitness landscape is multi–modal. The 
results produced by the Genetic Algorithm indicate that it is 
not the best of the five considered in all cases, but that in most 
cases the differences between the performance and that of the 
Greedy approach is not significant. However, an analysis of 
the fitness function shows that there are situations in which it 
is important to consider the entire ordering and, for such cases, 
Greedy Algorithms are unlikely to be appropriate. Given their 
generality, the fact that Genetic Algorithms perform so well is 
cause for encouragement. 
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