
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

PSO based Optimized Software Testing Technique

Abstract: Regression testing is an expensive, but important,
process. Unfortunately, there may be insufficient resources to
allow for the re–execution of all test cases during regression
testing. In this situation, test case prioritisation techniques aim
to improve the effectiveness of regression testing, by ordering
the test cases so that the most beneficial are executed first.
Previous work on regression test case prioritisation has
focused on Greedy Algorithms. However, it is known that
these algorithms may produce sub–optimal results, because
they may construct results that denote only local minima
within the search space. By contrast, meta–heuristic and
evolutionary search algorithms aim to avoid such problems.
This paper presents results from an empirical study of the
application of several greedy, meta–heuristic and evolutionary
search algorithms to six programs, ranging from 374 to 11,148
lines of code for 3 choices of fitness metric. The paper
addresses the problems of choice of fitness metric,
characterisation of landscape and determination of the most
suitable search technique to apply. The empirical results
replicate previous results concerning Greedy Algorithms.
They shed light on the nature of the regression testing search
space, indicating that it is multi–modal. The results also show
that Genetic Algorithms perform well, although Greedy
approaches are surprisingly effective, given the multi–modal
nature of the landscape.
Keywords: APFD, APBC, APDC, Genetic Algorithm, and
PSO.

1. Introduction:
Regression testing is a frequently applied but expensive
maintenance process that aims to (re-)verify modified
software. Many approaches for improving the regression
testing processes have been investigated. Test case
prioritisation [17] is one of these approaches, which orders test
cases so that the test cases with highest priority, according to
some criterion (a ‘fitness metric’), are executed first.
Rothermel et al. [11] define the test case prioritisation problem
and describe several issues relevant to its solution. The test
case prioritisation problem is defined (by Rothermel et al.) as
follows: The Test Case Prioritisation Problem:

Given: T,a test suite;PT, the set of permutations of T; f, a
function from PT to the real numbers.
Problem: Find T'ᅡPT such that (∀ܶ ′′(ܶ ′′ ∈ ܲܶ)(ܶ ′′ ≠
ܶ ′)[݂(ܶ ′) ≥ ݂(ܶ ′′)]
Here, PT represents the set of all possible prioritisations
(orderings) of T and f is a function that, applied to any such
ordering, yields an award value for that ordering. Test case

prioritisation can address a wide variety of objectives [11]. For
example, concerning coverage alone, testers might wish to
schedule test cases in order to achieve code coverage at the
fastest rate possible in the initial phase of regression testing, to
reach 100% coverage soonest or to ensure that the maximum
possible coverage is achieved by some pre–determined cut–off
point. Of course, the ideal order would reveal faults soonest,
but this cannot be determined in advance, so coverage often
has to serve as the most readily available surrogate. In the
Microsoft Developer Network (MSDN) library, the
achievement of adequate coverage without wasting time is a
primary consideration when conducting regression tests [10].
Furthermore, several testing standards require branch adequate
coverage, making the speedy achievement of coverage an
important aspect of the regression testing process. In previous
work, many techniques for regression test case prioritisation
have been described. Most of the proposed techniques were
code–based, relying on information relating test cases to
coverage of code elements. In [11], Rothermel et al.
investigated several prioritising techniques such as total
statement (or branch) coverage prioritisation and additional
statement (or branch) coverage prioritisation, that can improve
the rate of fault detection. In [13], Wong et al. prioritised test
cases according to the criterion of ‘increasing cost per
additional coverage’. In [12], Srivastava and Thiagarajan
studied a prioritisation technique that was based on the
changes that have been made to the program and focused on
the objective function of “impacted block coverage”. Other
non–coverage based techniques in the lit-erature include fault–
exposing–potential (FEP) prioritisation [11], history–based
test prioritisation [11], and the incorporation of varying test
costs and fault severities into test case prioritisation [5, 6].
Greedy Algorithms have been widely employed for test case
prioritisation. Greedy Algorithms incrementally add test cases
to an initially empty sequence. The choice of which test case
to add next issimple: it is that which achieves the maximum
value for the desired metric (e.g., some measure of coverage).

2. Related Work:
This work aims to find optimization techniques for test suite
optimization (TSO) in Regression testing(R/T). [1]. Zheng Li,
have studied various optimization techniques and algorithms
in order to find the technique that should be used for test suite
optimization (TSO) in regression testing. The techniques like
hill climbing, greedy algorithm, additional greedy algorithm,2-
optimal greedy algorithm, genetic algorithm, particle swarm
optimization(PSO) are studied and compared using different
parameters. These techniques are compared on the basis of

Uzma Jafri
Department of CSE

Integral University, Lucknow
jafriuzma82@gmail.com

Halima Sadia
Department of CSE

Integral University, Lucknow
halima@iul.ac.in

Jameel Ahmad
Department of CSE

Integral University, Lucknow
jameel@iul.ac.in

http://www.ijrdase.com
mailto:jafriuzma82@gmail.com
mailto:halima@iul.ac.in
mailto:jameel@iul.ac.in

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

their code coverage area, computational effort and execution
time.

Where the creation, understanding, and assessment of software
testing and regression testing techniques are concerned,
controlled experimentation is an indispensable research
methodology. Obtaining the infrastructure necessary to
support such experimentation, however, is difficult and
expensive. As a result, progress in experimentation with
testing techniques has been slow, and empirical data on the
costs and effectiveness of techniques remains relatively
scarce. To help address this problem, [2] V. Basili, have been
designing and constructing infrastructure to support controlled
experimentation with testing and regression testing techniques.
This work reports on the challenges faced by researchers
experimenting with testing techniques, including those that
inform the design of our infrastructure. The work then
describes the infrastructure that we are creating in response to
these challenges, and that we are now making available to
other researchers, and discusses the impact that this
infrastructure has and can be expected to have.

This survey has presented by [3]. Agrawal G. on empirical
work involving program slicing of relatively large scale
programs (ranging from a few thousand lines of code to tens
and even hundreds of thousands of lines of code). The results
concern questions about the efficacy of slicing, its
applications, the nature of the slices themselves, and the
interplay between slicing and other source code analyses.
Results from over thirty works, that contain empirical results
are included. Some general trends in the results reported are
evident and also some directions for future work emerge.

[4]. T. Abdel-Hamid presented a search{based approach for
planning resource allocation in large software projects, which
aims to find an optimal or near optimal order in which to
allocate work packages to programming teams, in order to
minimize the project duration. The approach is validated by an
empirical study of a large, commercial Y2K massive
maintenance project, comparing random scheduling, hill
climbing, simulating annealing and genetic algorithms,
applied to two different problem encodings. Results show that
a genome encoding the work package ordering, and alertness
function obtained by queuing simulation constitute the best
choice, both in terms of quality of results and number of
fitness evaluations required to achieve them.

Regression testing assures changed programs against
unintended amendments. Rearranging the execution order of
test cases is a key idea to improve their effectiveness.
Paradoxically, many test case prioritization techniques resolve
tie cases using the random selection approach, and yet random
ordering of test cases has been considered as ineffective.
Existing unit testing research unveils that adaptive random
testing (ART) is a promising candidate that may replace
random testing (RT). In this work, [5]. K. P. Chan, not only
propose a new family of coverage-based ART techniques, but
also show empirically that they are statistically superior to the

RT-based technique in detecting faults. Furthermore, one of
the ART prioritization techniques is consistently comparable
to some of the best coverage-based prioritization techniques
(namely, the “additional” techniques) and yet involves much
less time cost. Test case prioritization is a means to achieve
target objectives in software testing by reordering the
execution sequences of test suites. Many existing test case
prioritization techniques use random selection to resolve tie
cases. Paradoxically, the random approach for test case
prioritization has a long tradition to be deemed as ineffective.
Adaptive random testing (ART), which aims to spread test
cases as evenly and early as possible over the input domain,
has been proposed for test case generation. Empirical results
have shown that ART can be 40 to 50% more effective than
random testing in revealing the first failure of a program,
which is close to the theoretical limit. In regression testing,
however, further refinements of ART may be feasible in the
presence of coverage information.

3. Methodology:
Particle Swarm Optimization (PSO) is an evolutionary
computation technique, which is inspired by flocks of birds
and shoals of fish. In PSO, a number of simple entities (the
particles) are placed in the space of some problem and each
evaluates its fitness as its current location. Each particle
determines its movement through the space by considering the
particle which had the best fitness and the history of its own,
then it moves with a velocity. At last, the swarm is liable to
move near the best area. The speed and position of every
molecule is balanced by the accompanying formulas:

Vid =WXVid + c1Xrand()X(Pid-Xid)+C2XRand()X(Pad-Xid)
Xid =Xid + Vid

where c1 and c2 are termed the cognitive and social learning
rates. These two parameters control the relative importance of
the memory of the particle itself to the memory of the
neighborhood. The variable rand() and Rand() are two random
functions that is uniformly distributed in the range [0,1]. Xi =
(Xi1, Xi2, … , XiD) represents the ith particle. Pi = (Pi1, Pi2,
…, PiD) represents the best previous position of the ith
particle. The symbol g represents the index of the best particle
among all the particles. Vi = (Vi1, Vi2, … , ViD) represents
the velocity of the ith particle. Variable is the inertia weight.
The general process of PSO is as follows.

Do
Calculate fitness of particle
Update pbest if the current fitness is better than pbest
Determine nbest for each particle: choose the particle with the
best fitness value of all the neighbors as the nbest
For each particle Calculate particle velocity according to (1)
Update particle position according to (2)
While maximum iterations or minimum criteria is not attained

Since the introduction of the PSO algorithm, several
improvements have been suggested. In 1998, inertia weight
was first proposed by Shi and Eberhart [9]. The function of
inertia weight is to balance global exploration and local
exploitation. In the following year, Clerc proposed the

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

constriction factors to ensure the convergence of PSO [13].
Eberhart and Shi compared inertia weight with constriction
factors and found that the constriction factors was better
convergence than inertia weight [10].
The particle swarm optimization was proposed by Kennedy
and Eberhart [8, 9]. The PSO is able to solve multidimensional
optimization problems. It is based on simulating the social
behavior of swarm of bird flocking, bees, and fish schooling.
By randomly initializing the algorithm with candidate
solutions, the PSO successfully leads to a global optimum.
This is achieved by an iterative procedure based on the
processes of movement and intelligence in an evolutionary
system.
In PSO, each potential solution is represented as a particle. A
position and a velocity are associated with each particle.
The position and velocity of the ith particle are given by

పሬሬሬ⃗ݔ = ,.ଶݔ,.ଵݔ) … .ேݔ…),
పሬሬሬ⃗ݒ = ,.ଶݒ,.ଵݒ) … … .ேݒ)

Experimental Design
To improve the generality of the results reported in this paper,
the basic search experiment was instantiated with several
values of the three primary parameters that govern the nature
and outcomes of the search, namely:
1. The program to which regression testing is applied. Six
programs were studied, ranging from 374 to 11,148 lines of
code and including real as well as ‘laboratory’ programs.
2. The coverage criterion to be optimised.The three choices
studied were block, decision and statement coverage for each
program.
3. The size of the test suite. Two granularities of test suite size
were used: small suites of size 8 − 155 and large suites of size
228 − 4, 350. Of course, there is a connection between the first
and third category since a larger program will typically require
more test cases.

3.1 Subjects
In our study we used two groups of programs, called ‘small
programs’ and ‘large programs’1, from a total of six C
programs and their corresponding test suites (see Table 1).
The programs and test suites were from an infrastructure [4],
that is designed to support controlled experimentation with
software testing and regression testing techniques. Print
tokens2 and Schedule2 are variations of the programs Print
tokens and Schedule, respectively. These programs were
assembled by researchers at Siemens Corporate Research for
experiments with control–flow and data–flow test adequacy
criteria [10]; Space and Sed are large programs.

Table 1: Experimental Subjects
Subject LoC Blocks Decision Test

Pool
size

Average
Small
test
Suite
size

Average
Large
test
Suite
size

Print_tokens 726 126 123 4.130 16 318
Print_tokens2 570 103 154 4.115 12 388
Schedule 412 46 56 2.650 19 228
Schedule2 374 53 74 2.710 8 230

Space 9.564 869 1.068 13.585 155 4.350
Sed 11.148 951 2.331 1.293 1.293

Space was developed for the European Space Agency, and
Sed is the Unix stream editor string processing utility. For the
first four ‘small’ programs, the researchers at Siemens created
a test pool containing possible test cases for each program
[10]; Rothermel and his colleagues constructed test pools for
the two ‘large’ programs following the same approach.
The infrastructure provided by Rothermel et al. [18] was used
to obtain test suites in the following manner: in order to
produce small test suites a test case is selected at random from
the test pool and is added to the suite only if it adds to the
cumulative branch coverage. This is repeated until the test
suite achieves full branch coverage. In order to produce large
test suites, test cases are randomly selected from the test pool
and added to the test suite until full branch coverage is
achieved.

3.2 Effectiveness Measure:
The fitness metrics studied are based upon APFD (Average of
the Percentage of Faults Detected) [18], which measures the
weighted average of the percentage of faults detected over the
life of the suite. However, it is not (normally) possible to
know the faults exposed by a test case in advance and so this
value cannot be estimated before testing has taken place.
Therefore, coverage is used as a surrogate measure. It is not
the purpose of this paper to enter into the discussion of
whether or not coverage is a suitable surrogate for faults
found. Coverage is also an important concern in its own right,
due to the way in which it has become a part of ‘coverage
mandates’ in various testing standards (for example, avionics
standards [14]). The presence of these mandates means that
testers must achieve the mandated levels of coverage
irrespective of whether or not they may believe in coverage
per se. Depending on the coverage criterion considered, three
metrics were used in the paper:
1. APBC (Average Percentage Block Coverage) This
measures the rate at which a prioritised test suite covers the
blocks.
2. APDC (Average Percentage Decision Coverage) This
measures the rate at which a prioritised test suite covers the
decisions (branches).
3. APSC (Average Percentage Statement Coverage) This
measures the rate at which a prioritised test suite covers the
statements.
Consider the APBC metric as an example and a test suite T
containing n test cases that covers a set B of m blocks. Let TBi
be the first test case in the order T′ of T that covers block i.
The APBC for order T′ is given by the equation:

APBC=1- ்భା்మା⋯்

+ ଵ
ଶ

APBC measures the weighted average of the percentage of
block coverage over the life of the suite. APBC values range
from 0 to 100; higher numbers imply faster (better) coverage
rates.

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

(a) Test Suites and Block Coverage

(b) APBC for order T1

(c) APBC for Order T2

Fig 1: Example Illustrating the APBC Measurer

To illustrate this measure, consider an example program with
10 blocks and a test suite of 5 test cases, A through E, each
with block coverage characteristic. Consider two orders of
these test cases, order T1: A–B–C–D–E, and order T2: C–E–
B–A–D. Figure 3.4(b) and Figure 1(c) show the percentages of
block coverage as a function of the fraction of the test suite
used, for the two orders T1 and T2 respectively. The area
under the curve represents the average of the percentage of
block coverage over the life of the test suite. APDC and APSC
are defined in a similar manner to APBC, except that they
measure rate of coverage of decisions and of statements
respectively.

4. Result and Discussion:
Software testing is a frequently applied but expensive
maintenance process that aims to re–verify modified software.
Many approaches for improving the testing processes have
been investigated. Test case prioritisation [1] is one of these
approaches, which orders test cases so that the test cases with
highest priority, according to some criterion (a ‘fitness
metric’), are executed first. Rothermel et al. define the test
case prioritisation problem and describe several issues relevant
to its solution. The test case prioritisation problem is defined
(by Rothermel et al.) as follows:
Every time software is modified it is required to be tested.
Test case prioritisation is a black box technique that is used to
identify bugs that have emerged at the time of software
modification. This testing depends upon quality of test suites.
A good quality test suite leads to early fault detection and
hence improves quality of testing. Test suite optimization
techniques are used for prioritization, selection and
minimization of test cases in a test suite. Hill climbing, greedy
algorithm, additional greedy algorithm,2-optimal greedy
algorithm, genetic algorithm, particle swarm
optimization(PSO) are optimization algorithm. Particle swarm
optimization is a optimization Technique inspired by social
behaviour of bird flocking. In case of particle swarm
optimization the next position of a particle depends on its local
best position and the global best position of the swarm.
PSO includes following steps:
1. Create random population of particle.
2. Find fitness value of each particle in the population.
3. If particles current position is better than its previous
position make it personal best (pbest). For first iteration the
initial position of the particle will be particles best position.
4. Find the global best (gbest) particle .
5. Find the new position of the particle with the help of
personal best and global best position of the particle.
Change in position of particle is represented as velocity
update.
 Vi(t+1)= w*Vi(t)+c1*rand*(pbest-p)+c2*rand*(gbest-p)
 newP(t+1)=P+Vi(t+1)
Vi(t+1)-update velocity
C1-Weight of local information
C2-Weight of global information
Rand- 0<=rand<=1
pbest- Particle personal best position
gbest- Particle global best position
6. Move particle to their new position.
7. Follow the step 3 to 6 .
8. We stop when no more better particles are found in next
50(or according to the problem space) iteration.

Test case prioritization:

Table 2: Test case coverage record
Test
Cases

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Line of

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

Code:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
13 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
14 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1
15 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1
19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
21 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
23 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0
24 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0
25 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2 displays the test case coverage with respect to line of
codes during block coverage. There are 15 test cases are
applied on 26 code lines. For example column 1 represents
that test case 1 covers 1to 15,17 ,18 ,20 and 21st line of code
indicated by ‘1’ and uncovered lines are 16, 19, 22 to 25 are
uncovered and indicated by ‘0’.

Fig. 2: Percentage block coverage and APBC value at 1st

iteration for test suit represented by particle number 3
using PSO algorithm.

Test case selection:
It is the process of selecting subset of the test suite. The subset
of test suite is generated depending on the programs that are
affected by the software modification. Test case selection

reduces the number of test cases to be executed and thus
reduces the execution time of the test suite.

Fig. 3. Percentage block coverage and APBC value at 4th

iteration for test suit represented by particle number 5
using PSO algorithm.

5. Conclusion:
This work described five algorithms for the sequencing
problem in test case prioritisation for regression testing. It
presented the results of an empirical study that investigated
their relative effectiveness. The data and analysis indicate that
the Greedy Algorithm performs much worse than Additional
Greedy, 2–Optimal and Genetic Algorithms overall. Also, the
2–Optimal Algorithm overcomes the weakness of the Greedy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

0

9

7 13 5

15 4 12 6 11 10
3

14 2 1 8

test suite fraction

pe
rc

en
t b

lo
ck

 c
ov

er
ag

e

APBC= 87.9487%

iteration no.= 1 particle no.= 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

0

12

9
1

7 5 13
14

3 2 6 8 11 10
15 4

test suite fraction

pe
rc

en
t b

lo
ck

 c
ov

er
ag

e

APBC= 88.2051%

iteration no.= 4 particle no.= 5

http://www.ijrdase.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 13, Issue 2, May 2017
All Rights Reserved © 2017 IJRDASE

Algorithm and Additional Greedy Algorithm (see Table 1)
referred to by previous authors. However, the experiments
indicate that, in terms of effectiveness, there is no significant
difference between the performance of the 2–Optimal and
Additional Greedy Algorithms. This suggests that, where
applicable the cheaper–to–implement–and–execute Additional
Greedy Algorithm should be used. The choice of coverage
criterion does not affect the efficiency of algorithms for the
test case prioritization problem.

Fig. 4. Percentage block coverage and APBC value at 5th

iteration for test suit represented by particle number 7
using PSO algorithm.

The size of the test suite determines the size of the search
space, therefore affecting the 30 complexity of test case
prioritisation problem. The size of the program does not have
a direct effect, but increases the difficulty of computing fitness
values. Studies regarding the performance of meta–heuristic
algorithms led to several conclusions that have practical
ramifications. The results produced by Hill Climbing show
that the nature of the fitness landscape is multi–modal. The
results produced by the Genetic Algorithm indicate that it is
not the best of the five considered in all cases, but that in most
cases the differences between the performance and that of the
Greedy approach is not significant. However, an analysis of
the fitness function shows that there are situations in which it
is important to consider the entire ordering and, for such cases,
Greedy Algorithms are unlikely to be appropriate. Given their
generality, the fact that Genetic Algorithms perform so well is
cause for encouragement.

References:

[1]. Zheng Li, Mark Harman and Robert M. Hierons, “Search
Algorithms for Regression Test Case Prioritization”, IEEE
Transaction Paper on Software Engineering ,Vol. 33 Issue 4,
pp.225-237, 2007
[2]. V. Basili, R. Selby, E. Heinz, and D. Hutchens.
Experimentation in software engineering. IEEE Trans. Softw.
Eng., 12(7):733–743, July 1986.
[3]. Agrawal G., Guo L., "Evaluating explicitly context-
sensitive program slicing", in: Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, Snowbird, Utah, 2001, pp. 6-
12.
[4]. T. Abdel-Hamid. The dynamics of software project
sta_ng: a system dynamics based simulation approach. IEEE
Transactions on Software Engineering, 15(2):109{119, 1989.
[5]. K. P. Chan, T. Y. Chen, and D. P. Towey. Restricted
random testing. In Proceedings of the 7th European
Conference on Software Quality (ECSQ 2002), volume 2349
of Lecture Notes in Computer Science, pages 321–330.
Springer, Berlin, Germany, 2002.
[6]. . Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182, 2002.
[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of data flow and control-
flow-based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering, pages
191–200. IEEE Computer Society Press, May 1994.
[8] J.-M. Kim and A. Porter. A history-based test prioritization
technique for regression testing in resource constrained
environments. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages
119–129, New York, NY, USA, 2002. ACM Press.
[9] S. Lin. Computer Solutions of the Travelling Salesman
Problem. Bell System Tech. Journal, 44:2245–2269, 1965.
[10] Microsoft Corporation. Regression testing.
http://msdn.microsoft.com/library/default.asp?url=/library/enu
s/ vsent7/html/vxconregressiontesting.asp.
[11] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929–948, Oct.
2001.
[12] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In ISSTA ’02: Proceedings
of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, pages 97–106, New York, NY,
USA, 2002. ACM Press.
[13] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal.
A study of effective regression testing in practice. In
Proceedings of the Eighth International Symposium on
Software Reliability Engineering, pages 230–238. IEEE
Computer Society, Nov. 1997.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

0

12

9

15 2 6 11 8 10
3 1

7 5 4 13
14

test suite fraction

pe
rc

en
t b

lo
ck

 c
ov

er
ag

e

APBC= 86.9231%

iteration no.= 5 particle no.= 7

http://www.ijrdase.com
http://msdn.microsoft.com/library/default.asp?url=/library/enu

