
 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

A Review on Software Testing Suite Optimization by
PSO

Abstract: Software testing is an expensive, but important,
process. Unfortunately, there may be insufficient resources
to allow for the re–execution of all test cases during
regression testing. In this situation, test case prioritization
techniques aim to improve the effectiveness of testing, by
ordering the test cases so that the most beneficial are
executed first. Previous work on test case prioritisation has
focused on Greedy Algorithms. However, it is known that
these algorithms may produce sub–optimal results,
because they may construct results that denote only local
minima within the search space. By contrast, meta–
heuristic and evolutionary search algorithms aim to avoid
such problems.

Keywords: Greedy Algorithm, Test case prioritization,
PSO, Software testing

1. Introduction:
Software testing is a frequently applied but expensive
maintenance process that aims to (re-)verify modified
software. Many approaches for improving the testing
processes have been investigated. Test case prioritisation [18]
is one of these approaches, which orders test cases so that the
test cases with highest priority, according to some criterion (a
‘fitness metric’), are executed first. Rothermel et al. [18]
define the test case prioritisation problem and describe several
issues relevant to its solution. In the Microsoft Developer
Network (MSDN) library, the achievement of adequate
coverage without wasting time is a primary consideration
when conducting regression tests [13]. Furthermore, several
testing standards require branch adequate coverage, making
the speedy achievement of coverage an important aspect of the
regression testing process. In previous work, many techniques
for software test case prioritization have been described. Most
of the proposed techniques were code–based, relying on
information relating test cases to coverage of code elements.
In [6, 17, 18], Rothermel et al. investigated several prioritizing
techniques such as total statement (or branch) coverage
prioritization and additional statement (or branch) coverage
prioritization, that can improve the rate of fault detection. In
[22], Wong et al. prioritized test cases according to the
criterion of ‘increasing cost per additional coverage’. In [20],
Srivastava and Thiagarajan studied a prioritisation technique
that was based on the changes that have been made to the
program and focused on the objective function of “impacted

block coverage”. Non–coverage based techniques in the
literature include fault–exposing–potential (FEP) prioritization
[18], history–based test prioritization [11], and the
incorporation of varying test costs and fault severities into test
case prioritization [5, 6]. Greedy Algorithms have been widely
employed for test case prioritization. Greedy Algorithms
incrementally add test cases to an initially empty sequence.
The choice of which test case to add next is simple: it is that
which achieves the maximum value for the desired metric
(e.g., some measure of coverage). However, as Rothermel et
al. [18] point out, this greedy prioritization algorithm may not
always choose the optimal test case ordering. Greedy
Algorithms also require that it is possible to define the
improvement in fitness obtained by the addition of a single
element to a partially constructed sequence. As this paper will
show, in the case of regression test case prioritization, this is
not always possible. A simple example, based on statement
coverage, is presented in Table 1.1. If the aim is to achieve full
statement coverage as soon as possible, a Greedy Algorithm
may select A,B,C. However, the optimal test case orderings
for this example are B,C,A and C,B,A

2. Related Work:
This work aims to find optimization techniques for test suite
optimization (TSO) in Regression testing(R/T). [1]. Zheng Li,
have studied various optimization techniques and algorithms
in order to find the technique that should be used for test suite
optimization (TSO) in regression testing. The techniques like
hill climbing, greedy algorithm, additional greedy algorithm,2-
optimal greedy algorithm, genetic algorithm, particle swarm
optimization(PSO) are studied and compared using different
parameters. These techniques are compared on the basis of
their code coverage area, computational effort and execution
time.
This work delivers review of techniques used for test suit
optimization. It also gives detail about the comparison of
different optimization techniques. The review can help the
researchers in comparing the optimization techniques. It
provides future work idea that can be used in improving
regression testing. In my opinion we can use particle swarm
optimization technique for test suite optimization purpose by
improving the code coverage area of test suite. This survey
also shows that there is scope of future work in the field of

Azeem Ahmed
Department of Computer Science Engg.

L.I.T., Lucknow (U.P.), India
mail2ahmadazeem@gmail.com

Vipin Jaiswal
Department of Computer Science Engg.

L.I.T., Lucknow (U.P.), India
dir@litlucknow.ac.in

http://www.ijrdase.com
mailto:mail2ahmadazeem@gmail.com
mailto:dir@litlucknow.ac.in

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

regression testing. We can use this review for obtaining a
better technique for test suit optimization in regression testing.

Where the creation, understanding, and assessment of software
testing and regression testing techniques are concerned,
controlled experimentation is an indispensable research
methodology. Obtaining the infrastructure necessary to
support such experimentation, however, is difficult and
expensive. As a result, progress in experimentation with
testing techniques has been slow, and empirical data on the
costs and effectiveness of techniques remains relatively
scarce. To help address this problem, [2] V. Basili, have been
designing and constructing infrastructure to support controlled
experimentation with testing and regression testing techniques.
This work reports on the challenges faced by researchers
experimenting with testing techniques, including those that
inform the design of our infrastructure. The work then
describes the infrastructure that we are creating in response to
these challenges, and that we are now making available to
other researchers, and discusses the impact that this
infrastructure has and can be expected to have.
V. Basili have presented our infrastructure for supporting
controlled experimentation with testing techniques, and we
have described several of the ways in which it can potentially
help address many of the challenges faced by researchers
wishing to conduct controlled experiments on testing. We
close this article by providing additional discussion of the
impact, both demonstrated and potential, of this infrastructure.
First, we remark on the impact of our infrastructure to date.
Many of the infrastructure objects described in the previous
section are only now being made available to other
researchers. The Siemens and space programs, however, in the
format extended and organized by ourselves, have been
available to other researchers since 1999, and have seen
widespread use. In addition to our own works describing
experimentation using these artifacts (over twenty such works
have appeared, we have identified seven other works not
involving creators of this initial infrastructure that describe
controlled experiments 9 involving testing techniques using
the Siemens and/or space programs. The artifacts have also
been used in for a study of dynamic invariant detection
(attesting to the feasibility of using the infrastructure in areas
beyond those limited to testing). In our review of the
literature, we have found no similar usage of other artifacts for
controlled experimentation in software testing; the willingness
of other researchers to use the Siemens and space artifacts thus
attests to the potential for infrastructure, once made available,
to have an impact on research. This same willingness,
however, also illustrates the need for improvementsto
infrastructure, given that the Siemens and space artifacts
present only a small sample of the population of programs,
versions, tests, and faults. It seems reasonable, then, to expect
our extended infrastructure to be used for experimentation by
others, and to help extend the validity of experimental results
through widened scope. Indeed, we ourselves have been able

to use several of the newer infrastructure objects that are about
to be released in controlled experiments described in recent
publications as well as in three publications currently under
review.
In terms of impact, it is also worthwhile to discuss the costs
involved in preparing infrastructure; it is these costs that we
save when we re-use infrastructure. For example, the emp-
server and bash objects required between 80 and 300 person-
hours per version to prepare; two faculty and five graduate
research assistants have been involved in this preparation. The
flex, grep, make, sed and gzip programs involved two faculty,
three graduate students, and five undergraduate students; these
students worked 10-20 hours per week on these programs for
between 20 and 30 weeks. These costs are not costs typically
affordable by researchers; it is only by amortizing the costs
over the potential controlled experiments that can follow that
we render the costs acceptable. Finally, there are several
additional potential benefits to be realized through sharing of
infrastructure in terms of challenges addressed; these translate
into a reduction of threats to validity that would exist were the
infrastructure not shared. By sharing our infrastructure with
others, we can expect to receive feedback that will improve it.
User feedback will allow us to improve the robustness of our
tools and the clarity and completeness of our documentation,
enhancing the opportunities for replication of experiments,
aggregation of findings, and manipulation of individual
factors. We are in the process of setting up mechanisms for
encouraging researchers who use our infrastructure to
contribute additions to it in the form of new fault data, new
test suites, and variants of programs and versions that function
on other operational platforms. Ultimately, we expect the
community of researchers to assemble additional artifacts
using the formats and tools prescribed, and contribute them to
the infrastructure, which will increase the range and
representativeness of artifacts available to support
experimentation. Through this effort we hope to aid the entire
testing research community in pursuing controlled
experimentation with testing techniques, increasing our
understanding of these techniques and the factors that affect
them in ways that can be achieved only through such
experimentation.

This survey has presented by [3]. Agrawal G. on empirical
work involving program slicing of relatively large scale
programs (ranging from a few thousand lines of code to tens
and even hundreds of thousands of lines of code). The results
concern questions about the efficacy of slicing, its
applications, the nature of the slices themselves, and the
interplay between slicing and other source code analyses.
Results from over thirty works, that contain empirical results
are included. Some general trends in the results reported are
evident and also some directions for future work emerge:
(1) Slice size. In two separate studies with two different static
slicing tools and two different ways of determining slicing
criteria, it was reported that a typical static slice was

http://www.ijrdase.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

approximately one third of the size of the program from which
it was constructed. There has only been a single study of
dynamic slice size and the results indicate that the typical slice
size is approximately one fifth of the size of the program from
which it is constructed. There also appears to be a small
(perhaps not significant) difference in forward and backward
slice size. Finally, there is disagreement in the empirical
literature as to whether calling context makes a difference in
slice size with some studies finding little impactand others
significant impact. More work is needed in this area to clear
up this important issue.
(2) The impact of supporting analyses. It has been shown that
a variety of supporting analyses and algorithms used for
tuning slice construction have an impact upon slice size.
However, one of the striking aspects of the empirical results
on supporting analyses is the way in which a dramatic increase
in precision of some supporting analyses do not lead to a
commensurate decrease in slice size. Pointer analysis is a
prime example. This phenomenon is worthy of further
investigation.
(3) Slicing tools and techniques. This chapter has reported
several areas of work which show how the standard
approaches to slicing have been improved upon. The primary
observation which emerges is that this continues to be a
worthwhile area of research and where there are, as yet
undiscovered, techniques for improving slicing. Therefore, the
results for slice sizes should be regarded as upper bounds,
rather than limits. Finally, more work is required to better
understand the pros and cons of the essentially demand driven,
data flow slicing techniques as compared to the caching graph
reachability based slicing techniques.
(4) Applications of slices. The growing body of empirical
evidence for applications
of slices and in particular what might be termed the 'non-
traditional' applications is encouraging. Though slicing was
original deemed to be an end in itself, more recent work has
used slicing as a part of an overall approach or as a way of
solving problems for which it was not originally intended
(such as clone detection). These results are encouraging,
because they indicate that slicing has many applications
beyond those originally envisaged.
(5) Human comprehension studies. The application of
program slicing to aid human comprehension has shown that
slicing does, indeed, assist programmers when performing
comprehension-intensive activities such as debugging, fault
localization, and impact analysis. Furthermore, there is
evidence to suggest that slicing-aware programmers work
differently than non-slicing aware programmers.
In many ways the surface has only been scratched: the studies
concern primarily static slicing. There are some indications
that more recent forms of slicing, such as amorphous and
conditioned slicing may offer even greater benefits in
programmer comprehension activities.
In conclusion, there is now a large body of evidence to suggest
that slicing is practical and effective. New application areas

and improvements to slice computation techniques are being
regularly introduced, and results regarding the existing
techniques and applications are encouraging.

[4]. T. Abdel-Hamid presented a search{based approach for
planning resource allocation in large software projects, which
aims to find an optimal or near optimal order in which to
allocate work packages to programming teams, in order to
minimize the project duration. The approach is validated by an
empirical study of a large, commercial Y2K massive
maintenance project, comparing random scheduling, hill
climbing, simulating annealing and genetic algorithms,
applied to two different problem encodings. Results show that
a genome encoding the work package ordering, and alertness
function obtained by queuing simulation constitute the best
choice, both in terms of quality of results and number of
fitness evaluations required to achieve them.
This work has demonstrated that search{based techniques can
be applied to optimise resource allocation in a software
engineering project. Three search based techniques were
evaluated. Each was applied to two very different encoding
strategies. Each encoding represents the way in which the
work packages of the overall project are to be allocated to
teams of programmers. The ordering encoding, which
combines the search{based approach with a queuing
simulation model, was found to outperform the other
approaches. For the less optimal encoding the GA performed
significantly better than the other approaches. For the optimal
encoding, though GA starts better simulated annealing and hill
climbing approaches soon catch up, so that the overall
difference between the three approaches appears to be small,
compared to the problem of establishing an effective
encoding. Finally, the work reports the results of experiments
that alter the size of the project teams. While for a small
overall stang level, double-sized teams do not improve
performance, increasing the overall sting level is sufficiently
high, it proved effective to have double.

Regression testing assures changed programs against
unintended amendments. Rearranging the execution order of
test cases is a key idea to improve their effectiveness.
Paradoxically, many test case prioritization techniques resolve
tie cases using the random selection approach, and yet random
ordering of test cases has been considered as ineffective.
Existing unit testing research unveils that adaptive random
testing (ART) is a promising candidate that may replace
random testing (RT). In this work, [5]. K. P. Chan, not only
propose a new family of coverage-based ART techniques, but
also show empirically that they are statistically superior to the
RT-based technique in detecting faults. Furthermore, one of
the ART prioritization techniques is consistently comparable
to some of the best coverage-based prioritization techniques
(namely, the “additional” techniques) and yet involves much
less time cost. Test case prioritization is a means to achieve
target objectives in software testing by reordering the

http://www.ijrdase.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

execution sequences of test suites. Many existing test case
prioritization techniques use random selection to resolve tie
cases. Paradoxically, the random approach for test case
prioritization has a long tradition to be deemed as ineffective.
Adaptive random testing (ART), which aims to spread test
cases as evenly and early as possible over the input domain,
has been proposed for test case generation. Empirical results
have shown that ART can be 40 to 50% more effective than
random testing in revealing the first failure of a program,
which is close to the theoretical limit. In regression testing,
however, further refinements of ART may be feasible in the
presence of coverage information.
This work proposed the first family of adaptive random test
case prioritization techniques, and conducts an experiment to
evaluate its performance. It explores the ART prioritization
techniques with different test set distance definitions at
different code coverage levels rather than spreading test cases
as evenly and early as possible over the input domain. The
empirical results show that our techniques are significantly
more effective than random ordering. Moreover, the ART-br-
maxmin prioritization technique is a good candidate for
practical use because it can be as efficient and statistically as
effective as traditional coverage-based prioritization
techniques in revealing failures. In the future, we will
investigate other test case measures and study beyond code
coverage. Furthermore, they also want to extend our ART
prioritization techniques to testing concurrent programs.
Finally, as stated in the introduction, the use of random
ordering to resolve tie-cases with existing greedy algorithms is
deemed as ineffective. We would like to apply ART to resolve
tie-cases in order to combine the merits of our techniques with
other approaches.

Test case prioritization is an approach aiming at increasing the
rate of faults detection during the testing phase, by reordering
test case execution. Many techniques for regression test case
prioritization have been proposed. In this work, [6] . G.
Antoniol performed a simulation experiment to study five
search algorithms for test case prioritization and compare the
performance of these algorithms. The target of the study is to
have an in-depth investigation and improve the generality of
the comparison results. The simulation study provides two
useful guidelines:
 (1)Two search algorithms, Additional Greedy Algorithm and
2- Optimal Greedy Algorithm, outperform the other three
search algorithms in most cases.
(2) The performance of the five search algorithms will be
affected by the overlap of test cases with regard to test
requirements This work discusses the performance of five
typical techniques, Greedy Algorithm, Additional Greedy
Algorithm, 2-Optimal Greedy Algorithm, Hill Climbing
Algorithm and Genetic Algorithm, in various cases for test
case prioritization. It also reports empirical results of a
comparison of these five techniques. Since we assume that
each test case takes the same time to be accomplished, the

only criterion to compare the performance of these five
techniques is the APRCI. The main findings of our experiment
can be summarized as follows:
1. The performance of each algorithm rises with the increase
of σ and the decrease of μ.
2. When roverlap=1, these five algorithms have nearly the
same performance. When roverlap is extremely large, the
effect of each algorithm is really limited and few APRC scores
can be improved.
3. When roverlap is moderate, all these algorithms can
significantly improve the APRC scores. In most cases,
Additional Greedy Algorithm and 2-Optimal Greedy
Algorithm perform better than the other three algorithms and
they have the best performance when the value of roverlap is
around 3. There is no significant difference between the
performance of these two algorithms. Based on the findings of
our experiment, we have the following recommendation for
different ranges of roverlap. When roverlap is close to 1, any
of these five algorithms can be chosen.
When roverlap is extremely large (roverlap>50), there is no
need to apply any of these algorithms since the algorithms
themselves are time-consuming. When roverlap is moderate,
Additional Greedy Algorithm and 2-Optimal Algorithm are
the preferable choices.
In this work, the execution time of each test case is assumed
the same while in practice, the execution time of each test case
differs a lot and there is usually a time limit for test case
execution. So applying these techniques to time-aware test
case prioritization [13][15] is a topic for our future work. And
another work in the future is to do a quantitative statistical
analysis on how various factors influence the performance of
each search algorithm..

[7]. David Wendell Binkley worked argues that regression
test optimization problems such as selection and prioritization
require multi objective optimization in order to adequately
cater for real world regression testing scenarios. The work
presents several examples of costs and values that could be
incorporated into such a Multi Objective Regression Test
Optimization (MORTO) approach Testing is complex. There
is no direct measure of fault revelation likelihood and there are
many different types of cost involved. This complex interplay
between cost and value is further compounded by the many
additional validity constraints, making test case selection and
prioritization problems that naturally involve multi objective
optimization. This work argues that such a Multi Objective
Regression Test Optimization (MORTO) approach is long
overdue.

In this work [8] . A. Arcuri and L. Briand have introduced
and empirically evaluated two multi objective test suite
prioritisation techniques, based on the multi objective
evolutionary algorithms NSGA-II and TAEA. They evaluate
them against the state-of-the-art on a set of five utility
programs from the Software Infrastructure Repository (SIR),

http://www.ijrdase.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

together with a larger program, mysql, from which we
extracted fault data for 20 of its faults (all of which have status
“closed”). Even when the tester has only a single objective in
mind, it is useful to use a multi objective formulation to
improve early fault revelation. Since fault-revealing tests are
unidentifiable at prioritisation time, the tester is forced to use a
surrogate. They introduce a three-objective formulation of the
problem, in which all three objectives are coverage-related
surrogates. Our results demonstrate that this approach is
highly effective; we find faults significantly faster than the
state-of-the-art and with large effect size in 19 out of the 22
cases studied. We also introduce coverage compaction
algorithm which dramatically reduces coverage data size, and
thereby algorithm execution time. On the larger program,
mysql, the additional greedy algorithm takes 1.4 hours to
prioritise without compaction, but only 7 seconds after
compaction. The performance improvement is even more
dramatic for the multi objective algorithms. Their performance
is improved from over eight days to a little over one minute.
Since compaction can be applied to any and all regression
testing approaches, we believe that these performance
improvements may make an important contribution to the
practical application of repression test optimisation in future
work.

The aim of test case prioritisation is to determine an ordering
of test cases that maximises the likelihood of early fault
revelation. Previous prioritisation techniques have tended to
be single objective, for which the additional greedy algorithm
is the current state-of-the-art. Unlike test suite minimisation,
multi objective test case prioritisation has not been thoroughly
evaluated. This work presents an extensive empirical study of
the effectiveness of multi objective test case prioritisation,
evaluating it on multiple versions of five widely-used
benchmark programs and a much larger real world system of
over 1 million lines of code. The work also presents a lossless
coverage compaction algorithm that dramatically scales the
performance of all algorithms studied by between 2 and 4
orders of magnitude, making prioritization practical for even
very demanding problems.
[9] A. Arcuri and L. Briand worked empirically evaluates
seven different test case prioritisation algorithms: three
instantiations of the additional greedy algorithm with different
fault detection surrogates, two multi objective formulations
usingMOEAs (NSGA- II and TAEA), and two hybrid
algorithms that augment the MOEAs with the additional
greedy seeding. These algorithms are evaluated on a set of five
utility programs from the Software Infrastructure Repository
(SIR), together with a larger program, mysql, from which 20
real faults with “closed” status have been extracted. The
results show that MOEAs and hybrid algorithms can produce
solutions whose prioritisation effectiveness, measured by the
widely studied APFDc metric, is either equal or superior to
those of solutions produced by the additional greedy
algorithms. The work also introduces a coverage compaction

algorithm that dramatically, yet losslessly, reduces coverage
data size, and thereby algorithm execution time. On the largest
program, mysql, the additional greedy algorithms can take
more than two hours to prioritise without compaction, but only
12 seconds after compaction. The performance improvement
is even more dramatic for the MOEAs. Their performance is
improved from over eight days to a little over one minute.
Since compaction can be applied to any and all regression
testing approaches, these performance improvements may
make an important contribution to the practical application of
regression test optimisation in future work.

Regression testing is an expensive, but important, process.
Unfortunately, there may be insufficient resources to allow for
the re–execution of all test cases during regression testing. In
this situation, test case prioritisation techniques aim to
improve the effectiveness of regression testing, by ordering
the test cases so that the most beneficial are executed first.
Previous work on regression test case prioritisation has
focused on Greedy Algorithms. However, it is known that
these algorithms may produce sub–optimal results, because
they may construct results that denote only local minima
within the search space. By contrast, metaheuristic and
evolutionary search algorithms aim to avoid such problems.
[10]. G. Antoniol, presented results from an empirical study
of the application of several greedy, meta–heuristic and
evolutionary search algorithms to six programs, ranging from
374 to 11,148 lines of code for 3 choices of fitness metric. The
work addresses the problems of choice of fitness metric,
characterisation of landscape and determination of the most
suitable search technique to apply. The empirical results
replicate previous results concerning Greedy Algorithms.
They shed light on the nature of the regression testing search
space, indicating that it is multi–modal. The results also show
that Genetic Algorithms perform well, although Greedy
approaches are surprisingly effective, given the multi–modal
nature of the landscape.
This work described five algorithms for the sequencing
problem in test case prioritisation for regression testing. It
presented the results of an empirical study that investigated
their relative effectiveness. The data and analysis indicate that
the Greedy Algorithm performs much worse than Additional
Greedy, 2–Optimal and Genetic Algorithms overall. Also, the
2–Optimal Algorithm overcomes the weakness of the Greedy
Algorithm and Additional Greedy Algorithm (see Table 1)
referred to by previous authors. However, the experiments
indicate that, in terms of effectiveness, there is no significant
difference between the performance of the 2–Optimal and
Additional Greedy Algorithms. This suggests that, where
applicable the cheaper–to–implement–and–execute Additional
Greedy Algorithm should be used. The choice of coverage
criterion does not affect the efficiency of algorithms for the
test case prioritization problem. The size of the test suite
determines the size of the search space, therefore affecting the
30 complexity of test case prioritisation problem. The size of

http://www.ijrdase.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

the program does not have a direct effect, but increases the
difficulty of computing fitness values. Studies regarding the
performance of meta–heuristic algorithms led to several
conclusions that have practical ramifications. The results
produced by Hill Climbing show that the nature of the fitness
landscape is multi–modal. The results produced by the Genetic
Algorithm indicate that it is not the best of the five considered
in all cases, but that in most cases the differences between the
performance and that of the Greedy approach is not
significant. However, an analysis of the fitness function shows
that there are situations in which it is important to consider the
entire ordering and, for such cases, Greedy Algorithms are
unlikely to be appropriate (see Figure 4). Given their
generality, the fact that Genetic Algorithms perform so well is
cause for encouragement. The criteria studied were based on
code coverage, which is different from criteria based on fault
detection. The application of meta–heuristic algorithms to
fault detection based prioritisation problems could possibly
yield different results, but this is a topic for future work.

3. Conclusion:
This suggests that, where applicable the cheaper–to–
implement–and–execute Additional Greedy Algorithm should
be used. The choice of coverage criterion does not affect the
efficiency of algorithms for the test case prioritization
problem. The size of the program does not have a direct effect,
but increases the difficulty of computing fitness values.

References:
[1]. Zheng Li, Mark Harman and Robert M. Hierons, “Search
Algorithms for Regression Test Case Prioritization”, IEEE
Transaction Paper on Software Engineering ,Vol. 33 Issue 4,
pp.225-237, 2007
[2]. V. Basili, R. Selby, E. Heinz, and D. Hutchens.
Experimentation in software engineering. IEEE Trans. Softw.
Eng., 12(7):733–743, July 1986.
[3]. Agrawal G., Guo L., "Evaluating explicitly context-
sensitive program slicing", in: Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, Snowbird, Utah, 2001, pp. 6-
12.
[4]. T. Abdel-Hamid. The dynamics of software project
sta_ng: a system dynamics
based simulation approach. IEEE Transactions on Software
Engineering, 15(2):109{119, 1989.
[5]. K. P. Chan, T. Y. Chen, and D. P. Towey. Restricted
random testing. In Proceedings of the 7th European
Conference on Software Quality (ECSQ 2002), volume 2349
of Lecture Notes in Computer Science, pages 321–330.
Springer, Berlin, Germany, 2002.
[6]. G. Antoniol, M.D. Penta, and M. Harman, Search-Based
Techniques Applied to Optimization of Project Planning for a
Massive Maintenance Project, Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM
’05), pp. 240-249, 2005.

[7]. David Wendell Binkley. The application of program
slicing to regression testing. Information and Software
Technology Special Issue on Program Slicing, 40(11 and
12):583–594, 1998.
[8]. A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 1–10,
New York, NY, USA, 2011. ACM.
[9] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 1–10,
New York, NY, USA, 2011. ACM.
[10]. G. Antoniol, M. D. Penta, and M. Harman. Search-based
techniques applied to optimization of project planning for a
massive maintenance project. In 21st IEEE International
Conference on Software Maintenance (ICSM 2005), pages
240–249, Budapest, Hungary, 2005. IEEE Computer Society
Press, Los Alamitos, California, USA.
[11] Zadeh, L.A., (1965), “Fuzzy sets, Information and
Control”, 8, pp 338–353.
[12] Eberhart, R. C. and Shi, Y., A Modified Particle Swarm
Optimization, Proceedings of IEEE International Conference
on Evolutionary Computation, 1998, pp.69-73.
[13] Eberhart, R. C. and Shi, Y., Comparing Inertia Weights
and Constriction Factors in Particle Swarm Optimization,
Proceedings of the 2000 Congress on Evolutionary
Computation, Vol. 1, 2000, pp.84-88.
[14] Radio Technical Commission for Aeronautics. RTCA
DO178-B Software considerations in airborne systems and
equipment certification, 1992.
[15] C. R. Reeves, editor. Modern heuristic techniques for
combinatorial problems. JohnWiley & Sons, Inc., New York,
NY, USA, 1993.
[16] G. Reinelt. TSPLIB— A traveling salesman problem
library. ORSA Journal on Computing,
3(4):376–384, 1991.
[17] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Proceedings ICSM
1999, pages 179–188, Sept. 1999.
[18] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929–948, Oct.
2001.
[19] S. S. Skiena. The algorithm design manual. Springer-
Verlag, New York, NY, USA, 1998.
[20] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In ISSTA ’02: Proceedings
of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, pages 97–106, New York, NY,
USA, 2002. ACM Press.
[21] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

http://www.ijrdase.com

 International Journal of Research and Development in Applied Science and Engineering (IJRDASE)
ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 19, Issue 1, May 2019
All Rights Reserved © 2019 IJRDASE

[22] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal.
A study of effective regression testing in practice. In
Proceedings of the Eighth International Symposium on
Software Reliability Engineering, pages 230–238. IEEE
Computer Society, Nov. 1997.

http://www.ijrdase.com

