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Abstract: Software testing is an expensive, but important, 
process. Unfortunately, there may be insufficient resources 
to allow for the re–execution of all test cases during 
regression testing. In this situation, test case prioritization 
techniques aim to improve the effectiveness of testing, by 
ordering the test cases so that the most beneficial are 
executed first. Previous work on test case prioritisation has 
focused on Greedy Algorithms. However, it is known that 
these algorithms may produce sub–optimal results, 
because they may construct results that denote only local 
minima within the search space. By contrast, meta–
heuristic and evolutionary search algorithms aim to avoid 
such problems. 
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1. Introduction: 
Software testing is a frequently applied but expensive 
maintenance process that aims to (re-)verify modified 
software. Many approaches for improving the testing 
processes have been investigated. Test case prioritisation [18] 
is one of these approaches, which orders test cases so that the 
test cases with highest priority, according to some criterion (a 
‘fitness metric’), are executed first. Rothermel et al. [18] 
define the test case prioritisation problem and describe several 
issues relevant to its solution. In the Microsoft Developer 
Network (MSDN) library, the achievement of adequate 
coverage without wasting time is a primary consideration 
when conducting regression tests [13]. Furthermore, several 
testing standards require branch adequate coverage, making 
the speedy achievement of coverage an important aspect of the 
regression testing process. In previous work, many techniques 
for software test case prioritization have been described. Most 
of the proposed techniques were code–based, relying on 
information relating test cases to coverage of code elements. 
In [6, 17, 18], Rothermel et al. investigated several prioritizing 
techniques such as total statement (or branch) coverage 
prioritization and additional statement (or branch) coverage 
prioritization, that can improve the rate of fault detection. In 
[22], Wong et al. prioritized test cases according to the 
criterion of ‘increasing cost per additional coverage’. In [20], 
Srivastava and Thiagarajan studied a prioritisation technique 
that was based on the changes that have been made to the 
program and focused on the objective function of “impacted 

block coverage”. Non–coverage based techniques in the 
literature include fault–exposing–potential (FEP) prioritization 
[18], history–based test prioritization [11], and the 
incorporation of varying test costs and fault severities into test 
case prioritization [5, 6]. Greedy Algorithms have been widely 
employed for test case prioritization. Greedy Algorithms 
incrementally add test cases to an initially empty sequence. 
The choice of which test case to add next is simple: it is that 
which achieves the maximum value for the desired metric 
(e.g., some measure of coverage). However, as Rothermel et 
al. [18] point out, this greedy prioritization algorithm may not 
always choose the optimal test case ordering. Greedy 
Algorithms also require that it is possible to define the 
improvement in fitness obtained by the addition of a single 
element to a partially constructed sequence. As this paper will 
show, in the case of regression test case prioritization, this is 
not always possible. A simple example, based on statement 
coverage, is presented in Table 1.1. If the aim is to achieve full 
statement coverage as soon as possible, a Greedy Algorithm 
may select A,B,C. However, the optimal test case orderings 
for this example are B,C,A and C,B,A 
 
 
2. Related Work: 
This work aims to find optimization techniques for test suite 
optimization (TSO) in Regression testing(R/T). [1]. Zheng Li, 
have studied various optimization techniques and algorithms 
in order to find the technique that should be used for test suite 
optimization (TSO) in regression testing. The techniques like 
hill climbing, greedy algorithm, additional greedy algorithm,2-
optimal greedy algorithm, genetic algorithm, particle swarm 
optimization(PSO) are studied and compared using different 
parameters. These techniques are compared on the basis of 
their code coverage area, computational effort and execution 
time. 
This work delivers review of techniques used for test suit 
optimization. It also gives detail about the comparison of 
different optimization techniques. The review can help the 
researchers in comparing the optimization techniques. It 
provides future work idea that can be used in improving 
regression testing. In my opinion we can use particle swarm 
optimization technique for test suite optimization purpose by 
improving the code coverage area of test suite. This survey 
also shows that there is scope of future work in the field of 
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regression testing. We can use this review for obtaining a 
better technique for test suit optimization in regression testing. 
 
Where the creation, understanding, and assessment of software 
testing and regression testing techniques are concerned, 
controlled experimentation is an indispensable research 
methodology. Obtaining the infrastructure necessary to 
support such experimentation, however, is difficult and 
expensive. As a result, progress in experimentation with 
testing techniques has been slow, and empirical data on the 
costs and effectiveness of techniques remains relatively 
scarce. To help address this problem, [2] V. Basili, have been 
designing and constructing infrastructure to support controlled 
experimentation with testing and regression testing techniques. 
This work reports on the challenges faced by researchers 
experimenting with testing techniques, including those that 
inform the design of our infrastructure. The work then 
describes the infrastructure that we are creating in response to 
these challenges, and that we are now making available to 
other researchers, and discusses the impact that this 
infrastructure has and can be expected to have. 
V. Basili have presented our infrastructure for supporting 
controlled experimentation with testing techniques, and we 
have described several of the ways in which it can potentially 
help address many of the challenges faced by researchers 
wishing to conduct controlled experiments on testing. We 
close this article by providing additional discussion of the 
impact, both demonstrated and potential, of this infrastructure. 
First, we remark on the impact of our infrastructure to date. 
Many of the infrastructure objects described in the previous 
section are only now being made available to other 
researchers. The Siemens and space programs, however, in the 
format extended and organized by ourselves, have been 
available to other researchers since 1999, and have seen 
widespread use. In addition to our own works describing 
experimentation using these artifacts (over twenty such works 
have appeared, we have identified seven other works not 
involving creators of this initial infrastructure that describe 
controlled experiments 9 involving testing techniques using 
the Siemens and/or space programs. The artifacts have also 
been used in for a study of dynamic invariant detection 
(attesting to the feasibility of using the infrastructure in areas 
beyond those limited to testing). In our review of the 
literature, we have found no similar usage of other artifacts for 
controlled experimentation in software testing; the willingness 
of other researchers to use the Siemens and space artifacts thus 
attests to the potential for infrastructure, once made available, 
to have an impact on research. This same willingness, 
however, also illustrates the need for improvementsto 
infrastructure, given that the Siemens and space artifacts 
present only a small sample of the population of programs, 
versions, tests, and faults. It seems reasonable, then, to expect 
our extended infrastructure to be used for experimentation by 
others, and to help extend the validity of experimental results 
through widened scope. Indeed, we ourselves have been able 

to use several of the newer infrastructure objects that are about 
to be released in controlled experiments described in recent 
publications as well as in three publications currently under 
review. 
In terms of impact, it is also worthwhile to discuss the costs 
involved in preparing infrastructure; it is these costs that we 
save when we re-use infrastructure. For example, the emp-
server and bash objects required between 80 and 300 person-
hours per version to prepare; two faculty and five graduate 
research assistants have been involved in this preparation. The 
flex, grep, make, sed and gzip programs involved two faculty, 
three graduate students, and five undergraduate students; these 
students worked 10-20 hours per week on these programs for 
between 20 and 30 weeks. These costs are not costs typically 
affordable by researchers; it is only by amortizing the costs 
over the potential controlled experiments that can follow that 
we render the costs acceptable. Finally, there are several 
additional potential benefits to be realized through sharing of 
infrastructure in terms of challenges addressed; these translate 
into a reduction of threats to validity that would exist were the 
infrastructure not shared. By sharing our infrastructure with 
others, we can expect to receive feedback that will improve it. 
User feedback will allow us to improve the robustness of our 
tools and the clarity and completeness of our documentation, 
enhancing the opportunities for replication of experiments, 
aggregation of findings, and manipulation of individual 
factors. We are in the process of setting up mechanisms for 
encouraging researchers who use our infrastructure to 
contribute additions to it in the form of new fault data, new 
test suites, and variants of programs and versions that function 
on other operational platforms. Ultimately, we expect the 
community of researchers to assemble additional artifacts 
using the formats and tools prescribed, and contribute them to 
the infrastructure, which will increase the range and 
representativeness of artifacts available to support 
experimentation. Through this effort we hope to aid the entire 
testing research community in pursuing controlled 
experimentation with testing techniques, increasing our 
understanding of these techniques and the factors that affect 
them in ways that can be achieved only through such 
experimentation. 
 
This survey has presented by [3]. Agrawal G. on empirical 
work involving program slicing of relatively large scale 
programs (ranging from a few thousand lines of code to tens 
and even hundreds of thousands of lines of code). The results 
concern questions about the efficacy of slicing, its 
applications, the nature of the slices themselves, and the 
interplay between slicing and other source code analyses. 
Results from over thirty works, that contain empirical results 
are included. Some general trends in the results reported are 
evident and also some directions for future work emerge: 
(1) Slice size. In two separate studies with two different static 
slicing tools and two different ways of determining slicing 
criteria, it was reported that a typical static slice was 
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approximately one third of the size of the program from which 
it was constructed. There has only been a single study of 
dynamic slice size and the results indicate that the typical slice 
size is approximately one fifth of the size of the program from 
which it is constructed. There also appears to be a small 
(perhaps not significant) difference in forward and backward 
slice size. Finally, there is disagreement in the empirical 
literature as to whether calling context makes a difference in 
slice size with some studies finding little impactand others 
significant impact. More work is needed in this area to clear 
up this important issue. 
(2) The impact of supporting analyses. It has been shown that 
a variety of supporting analyses and algorithms used for 
tuning slice construction have an impact upon slice size. 
However, one of the striking aspects of the empirical results 
on supporting analyses is the way in which a dramatic increase 
in precision of some supporting analyses do not lead to a 
commensurate decrease in slice size. Pointer analysis is a 
prime example. This phenomenon is worthy of further 
investigation. 
(3) Slicing tools and techniques. This chapter has reported 
several areas of work which show how the standard 
approaches to slicing have been improved upon. The primary 
observation which emerges is that this continues to be a 
worthwhile area of research and where there are, as yet 
undiscovered, techniques for improving slicing. Therefore, the 
results for slice sizes should be regarded as upper bounds, 
rather than limits. Finally, more work is required to better 
understand the pros and cons of the essentially demand driven, 
data flow slicing techniques as compared to the caching graph 
reachability based slicing techniques. 
(4) Applications of slices. The growing body of empirical 
evidence for applications 
of slices and in particular what might be termed the 'non-
traditional' applications is encouraging. Though slicing was 
original deemed to be an end in itself, more recent work has 
used slicing as a part of an overall approach or as a way of 
solving problems for which it was not originally intended 
(such as clone detection). These results are encouraging, 
because they indicate that slicing has many applications 
beyond those originally envisaged. 
(5) Human comprehension studies. The application of 
program slicing to aid human comprehension has shown that 
slicing does, indeed, assist programmers when performing 
comprehension-intensive activities such as debugging, fault 
localization, and impact analysis. Furthermore, there is 
evidence to suggest that slicing-aware programmers work 
differently than non-slicing aware programmers. 
In many ways the surface has only been scratched: the studies 
concern primarily static slicing. There are some indications 
that more recent forms of slicing, such as amorphous and 
conditioned slicing may offer even greater benefits in 
programmer comprehension activities.  
In conclusion, there is now a large body of evidence to suggest 
that slicing is practical and effective. New application areas 

and improvements to slice computation techniques are being 
regularly introduced, and results regarding the existing 
techniques and applications are encouraging. 
 
[4]. T. Abdel-Hamid presented a search{based approach for 
planning resource allocation in large software projects, which 
aims to find an optimal or near optimal order in which to 
allocate work packages to programming teams, in order to 
minimize the project duration. The approach is validated by an 
empirical study of a large, commercial Y2K massive 
maintenance project, comparing random scheduling, hill 
climbing, simulating annealing and genetic algorithms, 
applied to two different problem encodings. Results show that 
a genome encoding the work package ordering, and alertness 
function obtained by queuing simulation constitute the best 
choice, both in terms of quality of results and number of 
fitness evaluations required to achieve them. 
This work has demonstrated that search{based techniques can 
be applied to optimise resource allocation in a software 
engineering project. Three search based techniques were 
evaluated. Each was applied to two very different encoding 
strategies. Each encoding represents the way in which the 
work packages of the overall project are to be allocated to 
teams of programmers. The ordering encoding, which 
combines the search{based approach with a queuing 
simulation model, was found to outperform the other 
approaches. For the less optimal encoding the GA performed 
significantly better than the other approaches. For the optimal 
encoding, though GA starts better simulated annealing and hill 
climbing approaches soon catch up, so that the overall 
difference between the three approaches appears to be small, 
compared to the problem of establishing an effective 
encoding. Finally, the work reports the results of experiments 
that alter the size of the project teams. While for a small 
overall stang level, double-sized teams do not improve 
performance, increasing the overall sting level is sufficiently 
high, it proved effective to have double. 
 
Regression testing assures changed programs against 
unintended amendments. Rearranging the execution order of 
test cases is a key idea to improve their effectiveness. 
Paradoxically, many test case prioritization techniques resolve 
tie cases using the random selection approach, and yet random 
ordering of test cases has been considered as ineffective. 
Existing unit testing research unveils that adaptive random 
testing (ART) is a promising candidate that may replace 
random testing (RT). In this work, [5]. K. P. Chan, not only 
propose a new family of coverage-based ART techniques, but 
also show empirically that they are statistically superior to the 
RT-based technique in detecting faults. Furthermore, one of 
the ART prioritization techniques is consistently comparable 
to some of the best coverage-based prioritization techniques 
(namely, the “additional” techniques) and yet involves much 
less time cost. Test case prioritization is a means to achieve 
target objectives in software testing by reordering the 
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execution sequences of test suites. Many existing test case 
prioritization techniques use random selection to resolve tie 
cases. Paradoxically, the random approach for test case 
prioritization has a long tradition to be deemed as ineffective. 
Adaptive random testing (ART), which aims to spread test 
cases as evenly and early as possible over the input domain, 
has been proposed for test case generation. Empirical results 
have shown that ART can be 40 to 50% more effective than 
random testing in revealing the first failure of a program, 
which is close to the theoretical limit. In regression testing, 
however, further refinements of ART may be feasible in the 
presence of coverage information. 
This work proposed the first family of adaptive random test 
case prioritization techniques, and conducts an experiment to 
evaluate its performance. It explores the ART prioritization 
techniques with different test set distance definitions at 
different code coverage levels rather than spreading test cases 
as evenly and early as possible over the input domain. The 
empirical results show that our techniques are significantly 
more effective than random ordering. Moreover, the ART-br-
maxmin prioritization technique is a good candidate for 
practical use because it can be as efficient and statistically as 
effective as traditional coverage-based prioritization 
techniques in revealing failures. In the future, we will 
investigate other test case measures and study beyond code 
coverage. Furthermore, they also want to extend our ART 
prioritization techniques to testing concurrent programs. 
Finally, as stated in the introduction, the use of random 
ordering to resolve tie-cases with existing greedy algorithms is 
deemed as ineffective. We would like to apply ART to resolve 
tie-cases in order to combine the merits of our techniques with 
other approaches. 
 
Test case prioritization is an approach aiming at increasing the 
rate of faults detection during the testing phase, by reordering 
test case execution. Many techniques for regression test case 
prioritization have been proposed. In this work, [6] . G. 
Antoniol performed a simulation experiment to study five 
search algorithms for test case prioritization and compare the 
performance of these algorithms. The target of the study is to 
have an in-depth investigation and improve the generality of 
the comparison results. The simulation study provides two 
useful guidelines: 
 (1)Two search algorithms, Additional Greedy Algorithm and 
2- Optimal Greedy Algorithm, outperform the other three 
search algorithms in most cases.  
(2) The performance of the five search algorithms will be 
affected by the overlap of test cases with regard to test 
requirements This work discusses the performance of five 
typical techniques, Greedy Algorithm, Additional Greedy 
Algorithm, 2-Optimal Greedy Algorithm, Hill Climbing 
Algorithm and Genetic Algorithm, in various cases for test 
case prioritization. It also reports empirical results of a 
comparison of these five techniques. Since we assume that 
each test case takes the same time to be accomplished, the 

only criterion to compare the performance of these five 
techniques is the APRCI. The main findings of our experiment 
can be summarized as follows: 
1. The performance of each algorithm rises with the increase 
of σ and the decrease of μ. 
2. When roverlap=1, these five algorithms have nearly the 
same performance. When roverlap is extremely large, the 
effect of each algorithm is really limited and few APRC scores 
can be improved. 
3. When roverlap is moderate, all these algorithms can 
significantly improve the APRC scores. In most cases, 
Additional Greedy Algorithm and 2-Optimal Greedy 
Algorithm perform better than the other three algorithms and 
they have the best performance when the value of roverlap is 
around 3. There is no significant difference between the 
performance of these two algorithms. Based on the findings of 
our experiment, we have the following recommendation for 
different ranges of roverlap. When roverlap is close to 1, any 
of these five algorithms can be chosen. 
When roverlap is extremely large (roverlap>50), there is no 
need to apply any of these algorithms since the algorithms 
themselves are time-consuming. When roverlap is moderate, 
Additional Greedy Algorithm and 2-Optimal Algorithm are 
the preferable choices. 
In this work, the execution time of each test case is assumed 
the same while in practice, the execution time of each test case 
differs a lot and there is usually a time limit for test case 
execution. So applying these techniques to time-aware test 
case prioritization [13][15] is a topic for our future work. And 
another work in the future is to do a quantitative statistical 
analysis on how various factors influence the performance of 
each search algorithm.. 
 
[7]. David Wendell Binkley worked argues that regression 
test optimization problems such as selection and prioritization 
require multi objective optimization in order to adequately 
cater for real world regression testing scenarios. The work 
presents several examples of costs and values that could be 
incorporated into such a Multi Objective Regression Test 
Optimization (MORTO) approach Testing is complex. There 
is no direct measure of fault revelation likelihood and there are 
many different types of cost involved. This complex interplay 
between cost and value is further compounded by the many 
additional validity constraints, making test case selection and 
prioritization problems that naturally involve multi objective 
optimization. This work argues that such a Multi Objective 
Regression Test Optimization (MORTO) approach is long 
overdue. 
 
In this work [8] . A. Arcuri and L. Briand have introduced 
and empirically evaluated two multi objective test suite 
prioritisation techniques, based on the multi objective 
evolutionary algorithms NSGA-II and TAEA. They evaluate 
them against the state-of-the-art on a set of five utility 
programs from the Software Infrastructure Repository (SIR), 
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together with a larger program, mysql, from which we 
extracted fault data for 20 of its faults (all of which have status 
“closed”). Even when the tester has only a single objective in 
mind, it is useful to use a multi objective formulation to 
improve early fault revelation. Since fault-revealing tests are 
unidentifiable at prioritisation time, the tester is forced to use a 
surrogate. They introduce a three-objective formulation of the 
problem, in which all three objectives are coverage-related 
surrogates. Our results demonstrate that this approach is 
highly effective; we find faults significantly faster than the 
state-of-the-art and with large effect size in 19 out of the 22 
cases studied. We also introduce coverage compaction 
algorithm which dramatically reduces coverage data size, and 
thereby algorithm execution time. On the larger program, 
mysql, the additional greedy algorithm takes 1.4 hours to 
prioritise without compaction, but only 7 seconds after 
compaction. The performance improvement is even more 
dramatic for the multi objective algorithms. Their performance 
is improved from over eight days to a little over one minute. 
Since compaction can be applied to any and all regression 
testing approaches, we believe that these performance 
improvements may make an important contribution to the 
practical application of repression test optimisation in future 
work. 
 
The aim of test case prioritisation is to determine an ordering 
of test cases that maximises the likelihood of early fault 
revelation. Previous prioritisation techniques have tended to 
be single objective, for which the additional greedy algorithm 
is the current state-of-the-art. Unlike test suite minimisation, 
multi objective test case prioritisation has not been thoroughly 
evaluated. This work presents an extensive empirical study of 
the effectiveness of multi objective test case prioritisation, 
evaluating it on multiple versions of five widely-used 
benchmark programs and a much larger real world system of 
over 1 million lines of code. The work also presents a lossless 
coverage compaction algorithm that dramatically scales the 
performance of all algorithms studied by between 2 and 4 
orders of magnitude, making prioritization practical for even 
very demanding problems. 
[9]  A. Arcuri and L. Briand worked empirically evaluates 
seven different test case prioritisation algorithms: three 
instantiations of the additional greedy algorithm with different 
fault detection surrogates, two multi objective formulations 
usingMOEAs (NSGA- II and TAEA), and two hybrid 
algorithms that augment the MOEAs with the additional 
greedy seeding. These algorithms are evaluated on a set of five 
utility programs from the Software Infrastructure Repository 
(SIR), together with a larger program, mysql, from which 20 
real faults with “closed” status have been extracted. The 
results show that MOEAs and hybrid algorithms can produce 
solutions whose prioritisation effectiveness, measured by the 
widely studied APFDc metric, is either equal or superior to 
those of solutions produced by the additional greedy 
algorithms. The work also introduces a coverage compaction 

algorithm that dramatically, yet losslessly, reduces coverage 
data size, and thereby algorithm execution time. On the largest 
program, mysql, the additional greedy algorithms can take 
more than two hours to prioritise without compaction, but only 
12 seconds after compaction. The performance improvement 
is even more dramatic for the MOEAs. Their performance is 
improved from over eight days to a little over one minute. 
Since compaction can be applied to any and all regression 
testing approaches, these performance improvements may 
make an important contribution to the practical application of 
regression test optimisation in future work. 
 
Regression testing is an expensive, but important, process. 
Unfortunately, there may be insufficient resources to allow for 
the re–execution of all test cases during regression testing. In 
this situation, test case prioritisation techniques aim to 
improve the effectiveness of regression testing, by ordering 
the test cases so that the most beneficial are executed first. 
Previous work on regression test case prioritisation has 
focused on Greedy Algorithms. However, it is known that 
these algorithms may produce sub–optimal results, because 
they may construct results that denote only local minima 
within the search space. By contrast, metaheuristic and 
evolutionary search algorithms aim to avoid such problems. 
[10].  G. Antoniol, presented results from an empirical study 
of the application of several greedy, meta–heuristic and 
evolutionary search algorithms to six programs, ranging from 
374 to 11,148 lines of code for 3 choices of fitness metric. The 
work addresses the problems of choice of fitness metric, 
characterisation of landscape and determination of the most 
suitable search technique to apply. The empirical results 
replicate previous results concerning Greedy Algorithms. 
They shed light on the nature of the regression testing search 
space, indicating that it is multi–modal. The results also show 
that Genetic Algorithms perform well, although Greedy 
approaches are surprisingly effective, given the multi–modal 
nature of the landscape. 
This work described five algorithms for the sequencing 
problem in test case prioritisation for regression testing. It 
presented the results of an empirical study that investigated 
their relative effectiveness. The data and analysis indicate that 
the Greedy Algorithm performs much worse than Additional 
Greedy, 2–Optimal and Genetic Algorithms overall. Also, the 
2–Optimal Algorithm overcomes the weakness of the Greedy 
Algorithm and Additional Greedy Algorithm (see Table 1) 
referred to by previous authors. However, the experiments 
indicate that, in terms of effectiveness, there is no significant 
difference between the performance of the 2–Optimal and 
Additional Greedy Algorithms. This suggests that, where 
applicable the cheaper–to–implement–and–execute Additional 
Greedy Algorithm should be used. The choice of coverage 
criterion does not affect the efficiency of algorithms for the 
test case prioritization problem. The size of the test suite 
determines the size of the search space, therefore affecting the 
30 complexity of test case prioritisation problem. The size of 
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the program does not have a direct effect, but increases the 
difficulty of computing fitness values. Studies regarding the 
performance of meta–heuristic algorithms led to several 
conclusions that have practical ramifications. The results 
produced by Hill Climbing show that the nature of the fitness 
landscape is multi–modal. The results produced by the Genetic 
Algorithm indicate that it is not the best of the five considered 
in all cases, but that in most cases the differences between the 
performance and that of the Greedy approach is not 
significant. However, an analysis of the fitness function shows 
that there are situations in which it is important to consider the 
entire ordering and, for such cases, Greedy Algorithms are 
unlikely to be appropriate (see Figure 4). Given their 
generality, the fact that Genetic Algorithms perform so well is 
cause for encouragement. The criteria studied were based on 
code coverage, which is different from criteria based on fault 
detection. The application of meta–heuristic algorithms to 
fault detection based prioritisation problems could possibly 
yield different results, but this is a topic for future work. 
 
3. Conclusion: 
This suggests that, where applicable the cheaper–to–
implement–and–execute Additional Greedy Algorithm should 
be used. The choice of coverage criterion does not affect the 
efficiency of algorithms for the test case prioritization 
problem. The size of the program does not have a direct effect, 
but increases the difficulty of computing fitness values. 
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