
International Conference on Recent Advancement in Science & Technology- 2020
(ICRAST-2020)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India
All Rights Reserved © 2020 IJRDASE

Robust Malware Detection for Internet of Thongs
(IoT) Devices using Deep Eigenspace Learning

1Shipra Singh, 2Abhishek Saxena
Dept of Computer science

Bansal Institute of Enginnering and Technology, Lucknow, India
bhushipra14@gmail.com, abhisaxena0212@gmail.com

Abstract: Internet of Things (IoT) in military settings
generally consists of a diverse range of Internet-
connected devices and nodes (e.g. medical devices and
wearable combat uniforms). These IoT devices and
nodes are a valuable target for cyber criminals,
particularly state-sponsored or nation state actors. A
common attack vector is the use of malware. In this
paper, we present a deep learning based method to
detect Internet Of Battlefield Things (IoBT) malware via
the device’s Operational Code (OpCode) sequence. We
transmute OpCodes into a vector space and apply a deep
Eigenspace learning approach to classify malicious and
benign applications. We also demonstrate the robustness
of our proposed approach in malware detection and its
sustainability against junk code insertion attacks. Lastly,
we make available our malware sample on Github,
which hopefully will benefit future research efforts (e.g.
to facilitate evaluation of future malware detection
approaches).

Keywords: IOT, OpCode, Eigenspace learning, Malware
detection.

1. Introduction:
Junk code injection attack is a malware anti-forensic
technique against OpCode inspection. As the name
suggests, junk code insertion may include addition of
benign OpCode sequences, which do not run in a malware
or inclusion of instructions (e.g. NOP) that do not actually
make any difference in malware activities. Junk code
insertion technique is generally designed to obfuscate
malicious OpCode sequences and reduce the ‘proportion’ of
malicious OpCodes in a malware In our proposed approach,
we use an affinity based criteria to mitigate junk OpCode
injection anti-forensics technique.
ARL intends to establish a new collaborative venture (the
IoBT CRA) that seeks to develop the foundations of IoBT in
the context of future Army operations”1. There are
underpinning security and privacy concerns in such IoT
environment [1]. While IoT and IoBT share many of the
underpinning cyber security risks (e.g. malware infection
[14]), the sensitive nature of IoBT deployment (e.g. military
and warfare) makes IoBT architecture and devices more
likely to be targeted by cyber criminals.

In addition, actors who target IoBT devices and
infrastructure are more likely to be state-sponsored, better
resourced, and professionally trained. Intrusion and malware
detection and prevention are two active research areas [11].
However, the resource constrained nature of most IoT and
IoBT devices and customized operating systems, existing /
conventional intrusion and malware detection and
prevention solutions are unlikely to be suited for real-world
deployment.
For example, IoT malware may exploit lowlevel
vulnerabilities present in compromised IoT devices or
vulnerabilities specific to certain IoT devices (e.g., Stuxnet,
a malware reportedly designed to target nuclear plants, are
likely to be ‘harmless’ to consumer devices such as Android
and iOS devices and personal computers). Thus, it is
necessary to answer the need for IoT and IoBT specific
malware detection [20].
There has been recent interest in utilizing machine learning
and deep learning techniques in malware detection (e.g.
distinguishing between malware and benign applications),
due to their potential to increase detection accuracy and
robustness [15]. Typically, the following criteria are used to
evaluate the utility of machine learning and deep learning
techniques in malware detection: True Positive (TP):
indicates that a malware is correctly identified as a
malicious application. True Negative (TN): indicates that a
benign is detected as a non-malicious application correctly.
False Positive (FP): indicates that a benign is falsely
detected as a malicious application. False Negative (FN):
indicates that a malware is not detected and labeled as a
non-malicious application. Based on the above criteria, the
following metrics will then be used to quantify the
effectiveness of a given system:
Accuracy is the number of samples that a classifier correctly
detects, divided by the number of all malware and goodware
Cross-validation is a fundamental technique in machine
learning to assess the extent that the findings of an
experiment can be generalized into an independent dataset.
While there are many cross validation techniques (e.g.,
Leave-POut, K-fold and Repeated Random Sub-sampling),
when the size of a dataset is limited K-fold validation
techniques (e.g. 10-fold) are generally used. K-Fold
validation techniques are also commonly used to validate
the fitness of a model to a hypothetical validation set in the
absence of an independent validation set [2], [6]. Due to the

mailto:bhushipra14@gmail.com,
mailto:abhisaxena0212@gmail.com

International Conference on Recent Advancement in Science & Technology- 2020
(ICRAST-2020)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India
All Rights Reserved © 2020 IJRDASE

fast pace of malware development and the significant
increase in the number of malware samples, using deep
learning techniques for malware detection is gaining
prominence.

2. Related Work:
Malware detection methods can be static or dynamic [5]. In
dynamic malware detection approaches, the program is
executed in a controlled environment (e.g., a virtual
machine or a sandbox) to collect its behavioral attributes
such as required resources, execution path, and requested
privilege, in order to classify a program as malware or
benign [6], [7], [8]. Static approaches (e.g., signature-based
detection, byte-sequence n-gram analysis, opcode sequence
identification and control flow graph traversal) statically
inspect a program code to detect suspicious applications.
David et al [9] proposed Deepsign to automatically detect
malware using a signature generation method. The latter
creates a dataset based on behaviour logs of API calls,
registry entries, web searches, port accesses, etc, in a
sandbox and then converts logs to a binary vector. They
used deep belief network for classification and reportedly
achieved 98.6% accuracy. In another study, Pascanu et al.
[1] proposed a method to model malware execution using
natural language modeling. They extracted relevant features
using recurrent neural network to predict the next API calls.
Then, both logistic regression and multi-layer perceptions
were applied as the classification module on next API call
prediction and using history of past events as features. It
was reported that 98.3% true positive rate and 0.1% false
positive rate were achieved. Demme et al. [4] examined the
feasibility of building a malware detector in IoT nodes’
hardware using performance counters as a learning feature
and K-Nearest Neighbor, Decision Tree and Random Forest
as classifiers. The reported accuracy rate for different
malware family ranges from 25% to 100%. Alam et al. [2]
applied Random Forest on a dataset of Internet-connected
smartphone devices to recognize malicious codes. They
executed APKs in an Android emulator and recorded
different features such as memory information, permission
and network for classification, and evaluated their approach
using different tree sizes. Their findings showed that the
optimal classifier contains 40 trees, and 0.0171 of mean
square root was achieved. In order to detect crypto-
ransomware on Android devices as management nodes of an
IoT networks, Azmoodeh et al. [3] recorded the power
usage of running processes and identified distinguishable
local energy consumption patterns for benign applications
and ransomware. They broke down the power usage pattern
into sub-samples and classified them, as well as aggregating
sub-samples’ labels to determine the final label. The
proposed approach reportedly achieved 92.75% accuracy.
The need to secure IoT backbone against malware attacks
motivated Haddad Pajouh et al. [44] to propose a two-layer
dimension reduction and two-tier classification module to

detect malicious activities. Specifically, the authors used
Principle Component Analysis and Linear Discrimination
Analysis to reduce the dataset and then used Na¨ıve Bayes
and K-Nearest Neighbor to classify samples. They achieved
detection and false alarm rates of 84.86% and 4.86%,
respectively. While OpCodes are considered an efficient
feature for malware detection, there does not appear to have
been any attempt to use OpCodes for IoT and IoBT malware
detection. In addition, using deep learning for robust
malware detection in IoT networks appears to be another
understudied topic. Thus, in this paper, we seek to
contribute to this gap by exploring the potential of using
OpCodes as features for malware detection with deep
Eigenspace learning.

3. Methodology:
Python is a general-purpose interpreted, interactive, object-
oriented, and high-level programming language. An
interpreted language, Python has a design philosophy that
emphasizes code readability (notably using whitespace
indentation to delimit code blocks rather than curly brackets
or keywords), and a syntax that allows programmers to
express concepts in fewer lines of code than might be used
in languages such as C++or Java. It provides constructs that
enable clear programming on both small and large scales.
Python interpreters are available for many operating
systems. CPython, the reference implementation of Python,
is open source software and has a community-based
development model, as do nearly all of its variant
implementations. CPython is managed by the non-profit
Python Software Foundation. Python features a dynamic
type system and automatic memory management. It
supports multiple programming paradigms, including
object-oriented, imperative, functional and procedural, and
has a large and comprehensive standard library.

Proposed System:
To the best of our knowledge, this is the first OpCodebased
deep learning method for IoT and IoBT malware detection.
We then demonstrate the robustness of our proposed
approach, against existing OpCode based malware detection
systems. We also demonstrate the effectiveness of our
proposed approach against junk-code insertion attacks.
Specifically, our proposed approach employs a class-wise
feature selection technique to overrule less important
OpCodes in order to resist junk-code insertion attacks.
Furthermore, we leverage all elements of Eigenspace to
increase detection rate and sustainability. Finally, as a
secondary contribution, we share a normalized dataset of
IoT malware and benign applications2, which may be used
by fellow researchers to evaluate and benchmark future
malware detection approaches. On the other hand, since the
proposed method belongs to OpCode based detection
category, it could be adaptable for non-IoT platforms. IoT
and IoBT application are likely to consist of a long sequence

International Conference on Recent Advancement in Science & Technology- 2020
(ICRAST-2020)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India
All Rights Reserved © 2020 IJRDASE

of OpCodes, which are instructions to be performed on
device processing unit. In order to disassemble samples, we
utilized Objdump (GNU binutils version 2.27.90) as a
disassembler to extract the OpCodes. Creating n-gram Op-
Code sequence is a common approach to classify malware
based on their disassembled codes. The number of
rudimentary features for length N is CN, where C is the size
of instruction set. It is clear that a significant increase in N
will result in feature explosion. In addition, decreasing the
size of feature increases robustness and effectiveness of
detection because ineffective features will affect
performance of the machine learning approach.

Malware Deduction
Users search the any link notably, not all network traffic
data generated by malicious apps correspond to malicious
traffic. Many malware take the form of repackaged benign
apps; thus, malware can also contain the basic functions of a
benign app. Subsequently, the network traffic they generate
can be characterized by mixed benign and malicious
network traffic. We examine the traffic flow header using
N-gram method from the natural language processing
(NLP).

Algorithm
N-Gram sequence:
In the fields of computational linguistics and probability, an
n-gram is a contiguous sequence of n items from a given
sample of text or speech. The items can be phonemes,
syllables, letters, words or base pairs according to the
application. The n-grams typically are collected from a text
or speech corpus.
Algorithm : Junk Code Insertion Procedure
Input: Trained Classifier D, Test Samples S, Junk Code
Percentage k
Output: Predicted Class for Test Samples P
1: P = fg
2: for each sample in S do
3: W= Compute the CFG of sample based on Section 4.1
4: R = fselect k% of W’s index randomly(Allow duplicate
indices)g
5: for each index in R do
6: Windex = Windex + 1
7: end for
8: Normalize W
9: e1; e2= 1st and 2nd eigenvectors of W
10: l1; l2= 1st and 2nd eigenvalues of W
11: P = P
S
D(e1; e2; l1; l2)
12: end for
13: return P

Support Vector Machine

“Support Vector Machine” (SVM) is a supervised machine
learning algorithm which can be used for both classification
and regression challenges. However, it is mostly used in
classification problems. In this algorithm, we plot each data
item as a point in n-dimensional space (where n is number
of features you have) with the value of each feature being
the value of a particular coordinate. Then, we perform
classification by finding the hyper-plane that differentiate
the two classes very well (look at the below snapshot). The
SVM algorithm is implemented in practice using a kernel.
The learning of the hyper plane in linear SVM is done by
transforming the problem using some linear algebra, which
is out of the scope of this introduction to SVM. A powerful
insight is that the linear SVM can be rephrased using the
inner product of any two given observations, rather than the
observations themselves. The inner product between two
vectors is the sum of the multiplication of each pair of input
values. For example, the inner product of the vectors [2, 3]
and [5, 6] is 2*5 + 3*6 or 28. The equation for making a
prediction for a new input using the dot product between the
input (x) and each support vector (xi) is calculated as
follows:

 f(x) = B0 + sum(ai * (x,xi))

This is an equation that involves calculating the inner
products of a new input vector (x) with all support vectors in
training data. The coefficients B0 and ai (for each input)
must be estimated from the training data by the learning
algorithm.

Fig 1: Architecture Diagram.

International Conference on Recent Advancement in Science & Technology- 2020
(ICRAST-2020)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India
All Rights Reserved © 2020 IJRDASE

4. Result and Discussion:
To show the robustness of our proposed approach and
benchmark it against existing proposals, two congruent
algorithms [1], [2] described in Section 1 are applied on our
generated dataset using Adaboost as the classification
algorithm. All evaluations were conducted using Python
Django Framework a running on a Microsoft Windows 10
Pro personal computer powered by Intel Core i5 2.67GHz
and 4GB RAM. A 10-fold cross validation was used in the
validating. It is clear that our proposed approach
outperforms the proposals of Hashemi et al. and Santos et
al.

IoT, particularly IoBT, will be increasingly important in the
foreseeable future. No malware detection solution will be
foolproof but we can be certain of the constant race between
cyber attackers and cyber defenders. Thus, it is important
that we maintain persistent pressure on threat actors. In this
paper, we presented an IoT and IoBT malware detection
approach based on class-wise selection of Op- Codes
sequence as a feature for classification task. A graph of
selected features was created for each sample and a deep
Eigenspace learning approach was used for malware
classification. Our evaluations demonstrated the robustness
of our approach in malware detection with an accuracy rate
of 98.37% and a precision rate of 98.59%, as well as the
capability to mitigate junk code insertion attacks.

The approach of Santos et al. is a basic and commonly-
known OpCode based malware detection algorithm and the
approach of Hashemi et al. is the most similar in terms of
using eigenspace as the basis. Accuracy is a general criteria
for evaluating performance of an algorithm for both
malware and benign class identification. The proposed
approach achieves a high accuracy of 99.68%, while the
approaches of Hashemi et al. and Santos et al. respectively
achieve 98.59% and 95.91% accuracy. Recall or detection
rate is an important criteria and the proposed approach
achieves 98.37%, in comparison to 81.55% and 77.70% for
the other two approaches.

Our proposed approach also outperforms the approaches of
Hashemi et al. and Santos et al., in terms of precision rate
and F-Measure. Utilizing class-wise feature selection
appears to result in beneficial features of minor class to be
more effective during classification phase. Also, using
Formulation (6) to calculate OpCode’s distance leads to the
ability to represent more OpCode sequence patterns in the
sample’s graph. It also appears that employing deep neural
networks for classification leads to a better classifier.

International Conference on Recent Advancement in Science & Technology- 2020
(ICRAST-2020)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India
All Rights Reserved © 2020 IJRDASE

5. Conclusion:
IoT, particularly IoBT, will be increasingly important in the
foreseeable future. No malware detection solution will be
foolproof but we can be certain of the constant race between
cyber attackers and cyber defenders. Thus, it is important
that we maintain persistent pressure on threat actors. In this
paper, we presented an IoT and IoBT malware detection
approach based on class-wise selection of Op- Codes
sequence as a feature for classification task. A graph of
selected features was created for each sample and a deep
Eigenspace learning approach was used for malware
classification. Our evaluations demonstrated the robustness
of our approach in malware detection with an accuracy rate
of 98.37% and a precision rate of 98.59%, as well as the
capability to mitigate junk code insertion attacks.

References:

[1] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S.
Nepal, “Internet of things (iot): Smart and secure service
delivery,” ACM Transactions on Internet Technology, vol.
16, no. 4, p. Article No. 22, 2016.
[2] X. Li, J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, and K.-
K. R. Choo, “A three-factor anonymous authentication
scheme for wireless sensor networks in internet of things
environments,” Journal of Network and Computer
Applications, 2017.
[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer systems,
vol. 29, no. 7, pp. 1645– 1660, 2013.
[4] F. Leu, C. Ko, I. You, K.-K. R. Choo, and C.-L. Ho, “A
smartphonebased wearable sensors for monitoring real-time
physiological data,” Computers & Electrical Engineering,
2017.
[5] M. Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of
things in smart agriculture: Intelligent irrigation monitoring
by thermal imaging,” IEEE Cloud Computing, vol. 4, no. 1,
pp. 10–15, 2017.
[6] X. Li, J. Niu, S. Kumari, F. Wu, and K.-K. R. Choo, “A
robust biometrics based three-factor authentication scheme
for global mobility networks in smart city,” Future
Generation Computer Systems, 2017.
[7] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15, pp.
2787–2805, 2010. [8] D. Miorandi, S. Sicari, F. De
Pellegrini, and I. Chlamtac, “Internet of things: Vision,
applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, 2012.
[9] A. Kott, A. Swami, and B. J. West, “The internet of
battle things,” Computer, vol. 49, no. 12, pp. 70–75, 2016.
[10] C. Tankard, “The security issues of the internet of
things,” Computer Fraud & Security, vol. 2015, no. 9, pp.
11 – 14, 2015.
[11] C. J. DOrazio, K. K. R. Choo, and L. T. Yang, “Data
exfiltration from internet of things devices: ios devices as
case studies,” IEEE Internet of Things Journal, vol. 4, no. 2,
pp. 524–535, April 2017.
[12] S. Watson and A. Dehghantanha, “Digital forensics: the
missing piece of the internet of things promise,” Computer
Fraud & Security, vol. 2016, no. 6, pp. 5–8, 2016.
[13] M. Conti, A. Dehghantanha, K. Franke, and S. Watson,
“Internet of things security and forensics: Challenges and
opportunities,” Future Generation Computer Systems, vol.
78, no. Part 2, pp. 544 – 546, 2018.
[14] E. Bertino and N. Islam, “Botnets and internet of things
security,” Computer, vol. 50, no. 2, pp. 76–79, Feb 2017.
[15] J. Gardiner and S. Nagaraja, “On the security of
machine learning in malware c&c detection: A survey,”
ACM Computing Surveys, vol. 49, no. 3, p. Article No. 59,
2016.

