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Abstract: Internet of Things (IoT) in military settings 
generally consists of a diverse range of Internet-
connected devices and nodes (e.g. medical devices and 
wearable combat uniforms). These IoT devices and 
nodes are a valuable target for cyber criminals, 
particularly state-sponsored or nation state actors. A 
common attack vector is the use of malware. In this 
paper, we present a deep learning based method to 
detect Internet Of Battlefield Things (IoBT) malware via 
the device’s Operational Code (OpCode) sequence. We 
transmute OpCodes into a vector space and apply a deep 
Eigenspace learning approach to classify malicious and 
benign applications. We also demonstrate the robustness 
of our proposed approach in malware detection and its 
sustainability against junk code insertion attacks. Lastly, 
we make available our malware sample on Github, 
which hopefully will benefit future research efforts (e.g. 
to facilitate evaluation of future malware detection 
approaches). 
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1. Introduction: 
Junk code injection attack is a malware anti-forensic 
technique against OpCode inspection. As the name 
suggests, junk code insertion may include addition of 
benign OpCode sequences, which do not run in a malware 
or inclusion of instructions (e.g. NOP) that do not actually 
make any difference in malware activities. Junk code 
insertion technique is generally designed to obfuscate 
malicious OpCode sequences and reduce the ‘proportion’ of 
malicious OpCodes in a malware In our proposed approach, 
we use an affinity based criteria to mitigate junk OpCode 
injection anti-forensics technique. 
ARL intends to establish a new collaborative venture (the 
IoBT CRA) that seeks to develop the foundations of IoBT in 
the context of future Army operations”1. There are 
underpinning security and privacy concerns in such IoT 
environment [1]. While IoT and IoBT share many of the 
underpinning cyber security risks (e.g. malware infection 
[14]), the sensitive nature of IoBT deployment (e.g. military 
and warfare) makes IoBT architecture and devices more 
likely to be targeted by cyber criminals.  

In addition, actors who target IoBT devices and 
infrastructure are more likely to be state-sponsored, better 
resourced, and professionally trained. Intrusion and malware 
detection and prevention are two active research areas [11]. 
However, the resource constrained nature of most IoT and 
IoBT devices and customized operating systems, existing / 
conventional intrusion and malware detection and 
prevention solutions are unlikely to be suited for real-world 
deployment.  
For example, IoT malware may exploit lowlevel 
vulnerabilities present in compromised IoT devices or 
vulnerabilities specific to certain IoT devices (e.g., Stuxnet, 
a malware reportedly designed to target nuclear plants, are 
likely to be ‘harmless’ to consumer devices such as Android 
and iOS devices and personal computers). Thus, it is 
necessary to answer the need for IoT and IoBT specific 
malware detection [20].  
There has been recent interest in utilizing machine learning 
and deep learning techniques in malware detection (e.g. 
distinguishing between malware and benign applications), 
due to their potential to increase detection accuracy and 
robustness [15]. Typically, the following criteria are used to 
evaluate the utility of machine learning and deep learning 
techniques in malware detection: True Positive (TP): 
indicates that a malware is correctly identified as a 
malicious application. True Negative (TN): indicates that a 
benign is detected as a non-malicious application correctly. 
False Positive (FP): indicates that a benign is falsely 
detected as a malicious application. False Negative (FN): 
indicates that a malware is not detected and labeled as a 
non-malicious application. Based on the above criteria, the 
following metrics will then be used to quantify the 
effectiveness of a given system:  
Accuracy is the number of samples that a classifier correctly 
detects, divided by the number of all malware and goodware 
Cross-validation is a fundamental technique in machine 
learning to assess the extent that the findings of an 
experiment can be generalized into an independent dataset.  
While there are many cross validation techniques (e.g., 
Leave-POut, K-fold and Repeated Random Sub-sampling), 
when the size of a dataset is limited K-fold validation 
techniques (e.g. 10-fold) are generally used. K-Fold 
validation techniques are also commonly used to validate 
the fitness of a model to a hypothetical validation set in the 
absence of an independent validation set [2], [6]. Due to the 
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fast pace of malware development and the significant 
increase in the number of malware samples, using deep 
learning techniques for malware detection is gaining 
prominence.   
 
2. Related Work: 
Malware detection methods can be static or dynamic [5]. In 
dynamic malware detection approaches, the program is 
executed in a controlled environment (e.g., a virtual 
machine or a sandbox) to collect its behavioral attributes 
such as required resources, execution path, and requested 
privilege, in order to classify a program as malware or 
benign [6], [7], [8]. Static approaches (e.g., signature-based 
detection, byte-sequence n-gram analysis, opcode sequence 
identification and control flow graph traversal) statically 
inspect a program code to detect suspicious applications. 
David et al [9] proposed Deepsign to automatically detect 
malware using a signature generation method. The latter 
creates a dataset based on behaviour logs of API calls, 
registry entries, web searches, port accesses, etc, in a 
sandbox and then converts logs to a binary vector. They 
used deep belief network for classification and reportedly 
achieved 98.6% accuracy. In another study, Pascanu et al. 
[1] proposed a method to model malware execution using 
natural language modeling. They extracted relevant features 
using recurrent neural network to predict the next API calls. 
Then, both logistic regression and multi-layer perceptions 
were applied as the classification module on next API call 
prediction and using history of past events as features. It 
was reported that 98.3% true positive rate and 0.1% false 
positive rate were achieved. Demme et al. [4] examined the 
feasibility of building a malware detector in IoT nodes’ 
hardware using performance counters as a learning feature 
and K-Nearest Neighbor, Decision Tree and Random Forest 
as classifiers. The reported accuracy rate for different 
malware family ranges from 25% to 100%. Alam et al. [2] 
applied Random Forest on a dataset of Internet-connected 
smartphone devices to recognize malicious codes. They 
executed APKs in an Android emulator and recorded 
different features such as memory information, permission 
and network for classification, and evaluated their approach 
using different tree sizes. Their findings showed that the 
optimal classifier contains 40 trees, and 0.0171 of mean 
square root was achieved. In order to detect crypto-
ransomware on Android devices as management nodes of an 
IoT networks, Azmoodeh et al. [3] recorded the power 
usage of running processes and identified distinguishable 
local energy consumption patterns for benign applications 
and ransomware. They broke down the power usage pattern 
into sub-samples and classified them, as well as aggregating 
sub-samples’ labels to determine the final label. The 
proposed approach reportedly achieved 92.75% accuracy. 
The need to secure IoT backbone against malware attacks 
motivated Haddad Pajouh et al. [44] to propose a two-layer 
dimension reduction and two-tier classification module to 

detect malicious activities. Specifically, the authors used 
Principle Component Analysis and Linear Discrimination 
Analysis to reduce the dataset and then used Na¨ıve Bayes 
and K-Nearest Neighbor to classify samples. They achieved 
detection and false alarm rates of 84.86% and 4.86%, 
respectively. While OpCodes are considered an efficient 
feature for malware detection, there does not appear to have 
been any attempt to use OpCodes for IoT and IoBT malware 
detection. In addition, using deep learning for robust 
malware detection in IoT networks appears to be another 
understudied topic. Thus, in this paper, we seek to 
contribute to this gap by exploring the potential of using 
OpCodes as features for malware detection with deep 
Eigenspace learning. 
 
3. Methodology: 
Python is a general-purpose interpreted, interactive, object-
oriented, and high-level programming language. An 
interpreted language, Python has a design philosophy that 
emphasizes code readability (notably using whitespace 
indentation to delimit code blocks rather than curly brackets 
or keywords), and a syntax that allows programmers to 
express concepts in fewer lines of code than might be used 
in languages such as C++or Java. It provides constructs that 
enable clear programming on both small and large scales. 
Python interpreters are available for many operating 
systems. CPython, the reference implementation of Python, 
is open source software and has a community-based 
development model, as do nearly all of its variant 
implementations. CPython is managed by the non-profit 
Python Software Foundation. Python features a dynamic 
type system and automatic memory management. It 
supports multiple programming paradigms, including 
object-oriented, imperative, functional and procedural, and 
has a large and comprehensive standard library. 
 
Proposed System: 
To the best of our knowledge, this is the first OpCodebased 
deep learning method for IoT and IoBT malware detection. 
We then demonstrate the robustness of our proposed 
approach, against existing OpCode based malware detection 
systems. We also demonstrate the effectiveness of our 
proposed approach against junk-code insertion attacks. 
Specifically, our proposed approach employs a class-wise 
feature selection technique to overrule less important 
OpCodes in order to resist junk-code insertion attacks. 
Furthermore, we leverage all elements of Eigenspace to 
increase detection rate and sustainability. Finally, as a 
secondary contribution, we share a normalized dataset of 
IoT malware and benign applications2, which may be used 
by fellow researchers to evaluate and benchmark future 
malware detection approaches. On the other hand, since the 
proposed method belongs to OpCode based detection 
category, it could be adaptable for non-IoT platforms. IoT 
and IoBT application are likely to consist of a long sequence 
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of OpCodes, which are instructions to be performed on 
device processing unit. In order to disassemble samples, we 
utilized Objdump (GNU binutils version 2.27.90) as a 
disassembler to extract the OpCodes. Creating n-gram Op- 
Code sequence is a common approach to classify malware 
based on their disassembled codes. The number of 
rudimentary features for length N is CN, where C is the size 
of instruction set. It is clear that a significant increase in N 
will result in feature explosion. In addition, decreasing the 
size of feature increases robustness and effectiveness of 
detection because ineffective features will affect 
performance of the machine learning approach. 
 
Malware Deduction 
Users search the any link notably, not all network traffic 
data generated by malicious apps correspond to malicious 
traffic. Many malware take the form of repackaged benign 
apps; thus, malware can also contain the basic functions of a 
benign app. Subsequently, the network traffic they generate 
can be characterized by mixed benign and malicious 
network traffic. We examine the traffic flow header using 
N-gram method from the natural language processing 
(NLP). 
 
Algorithm 
N-Gram sequence: 
In the fields of computational linguistics and probability, an 
n-gram is a contiguous sequence of n items from a given 
sample of text or speech. The items can be phonemes, 
syllables, letters, words or base pairs according to the 
application. The n-grams typically are collected from a text 
or speech corpus. 
Algorithm : Junk Code Insertion Procedure 
Input: Trained Classifier D, Test Samples S, Junk Code 
Percentage k 
Output: Predicted Class for Test Samples P 
1: P = fg 
2: for each sample in S do 
3: W= Compute the CFG of sample based on Section 4.1 
4: R = fselect k% of W’s index randomly(Allow duplicate 
indices)g 
5: for each index in R do 
6: Windex = Windex + 1 
7: end for 
8: Normalize W 
9: e1; e2= 1st and 2nd eigenvectors of W 
10: l1; l2= 1st and 2nd eigenvalues of W 
11: P = P 
S 
D(e1; e2; l1; l2) 
12: end for 
13: return P 
 
Support Vector Machine 

“Support Vector Machine” (SVM) is a supervised machine 
learning algorithm which can be used for both classification 
and regression challenges. However, it is mostly used in 
classification problems. In this algorithm, we plot each data 
item as a point in n-dimensional space (where n is number 
of features you have) with the value of each feature being 
the value of a particular coordinate. Then, we perform 
classification by finding the hyper-plane that differentiate 
the two classes very well (look at the below snapshot). The 
SVM algorithm is implemented in practice using a kernel. 
The learning of the hyper plane in linear SVM is done by 
transforming the problem using some linear algebra, which 
is out of the scope of this introduction to SVM. A powerful 
insight is that the linear SVM can be rephrased using the 
inner product of any two given observations, rather than the 
observations themselves. The inner product between two 
vectors is the sum of the multiplication of each pair of input 
values. For example, the inner product of the vectors [2, 3] 
and [5, 6] is 2*5 + 3*6 or 28. The equation for making a 
prediction for a new input using the dot product between the 
input (x) and each support vector (xi) is calculated as 
follows:  
 
                                              f(x) = B0 + sum(ai * (x,xi))  
 
This is an equation that involves calculating the inner 
products of a new input vector (x) with all support vectors in 
training data. The coefficients B0 and ai (for each input) 
must be estimated from the training data by the learning 
algorithm. 
 
 

 
Fig 1: Architecture Diagram. 
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4. Result and Discussion: 
To show the robustness of our proposed approach and 
benchmark it against existing proposals, two congruent 
algorithms [1], [2] described in Section 1 are applied on our 
generated dataset using Adaboost as the classification 
algorithm. All evaluations were conducted using Python 
Django Framework a running on a Microsoft Windows 10 
Pro personal computer powered by Intel Core i5 2.67GHz 
and 4GB RAM. A 10-fold cross validation was used in the 
validating. It is clear that our proposed approach 
outperforms the proposals of Hashemi et al. and Santos et 
al.  
 
IoT, particularly IoBT, will be increasingly important in the 
foreseeable future. No malware detection solution will be 
foolproof but we can be certain of the constant race between 
cyber attackers and cyber defenders. Thus, it is important 
that we maintain persistent pressure on threat actors. In this 
paper, we presented an IoT and IoBT malware detection 
approach based on class-wise selection of Op- Codes 
sequence as a feature for classification task. A graph of 
selected features was created for each sample and a deep 
Eigenspace learning approach was used for malware 
classification. Our evaluations demonstrated the robustness 
of our approach in malware detection with an accuracy rate 
of 98.37% and a precision rate of 98.59%, as well as the 
capability to mitigate junk code insertion attacks. 
 
The approach of Santos et al. is a basic and commonly-
known OpCode based malware detection algorithm and the 
approach of Hashemi et al. is the most similar in terms of 
using eigenspace as the basis. Accuracy is a general criteria 
for evaluating performance of an algorithm for both 
malware and benign class identification. The proposed 
approach achieves a high accuracy of 99.68%, while the 
approaches of Hashemi et al. and Santos et al. respectively 
achieve 98.59% and 95.91% accuracy. Recall or detection 
rate is an important criteria and the proposed approach 
achieves 98.37%, in comparison to 81.55% and 77.70% for 
the other two approaches.  
 
Our proposed approach also outperforms the approaches of 
Hashemi et al. and Santos et al., in terms of precision rate 
and F-Measure. Utilizing class-wise feature selection 
appears to result in beneficial features of minor class to be 
more effective during classification phase. Also, using 
Formulation (6) to calculate OpCode’s distance leads to the 
ability to represent more OpCode sequence patterns in the 
sample’s graph. It also appears that employing deep neural 
networks for classification leads to a better classifier. 

 

 
 
 
 
 

 
 



International Conference on Recent Advancement in Science & Technology- 2020 
(ICRAST-2020) 

 

Organized by: International Journal of Research and Development in Applied Science and Engineering, India 
All Rights Reserved © 2020 IJRDASE 

 

 
 

 
 
5.  Conclusion: 
IoT, particularly IoBT, will be increasingly important in the 
foreseeable future. No malware detection solution will be 
foolproof but we can be certain of the constant race between 
cyber attackers and cyber defenders. Thus, it is important 
that we maintain persistent pressure on threat actors. In this 
paper, we presented an IoT and IoBT malware detection 
approach based on class-wise selection of Op- Codes 
sequence as a feature for classification task. A graph of 
selected features was created for each sample and a deep 
Eigenspace learning approach was used for malware 
classification. Our evaluations demonstrated the robustness 
of our approach in malware detection with an accuracy rate 
of 98.37% and a precision rate of 98.59%, as well as the 
capability to mitigate junk code insertion attacks. 
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