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Abstract: Video compression technique is now mature as is 

proven by the large number of applications that make use 

of DWT and DCT technology. Now day’s lot of video 

compression techniques proposed. With efficient 

compression techniques, a significant reduction in file size 

can be achieved with little or no adverse effect on the 

visual quality. This paper gives the idea about for video 

compression technique but not very much good for the real 

time video compression techniques either have a demerit 

of loosely techniques like DCT and DWT but here we are 

going to present a noble technique in which we will use 

object position change finding algorithm to get our video 

process in real time and having lossless decompressions. 

Compression is done in real time, such a way while 

maintaining the benefits of keeping all of the information 

of the source and also the benefits of compression during 

the production process. "Lossless" means that the output 

from the decompressor is bitfor-bit identical with the 

original input to the compressor. The decompressed video 

stream should be completely identical to original. In 

addition to providing improved coding efficiency in real 

time the technique provides the ability to selectively 

encode, decode, and manipulate individual objects in a 

video stream. The technique used results in video coding 

that a high compression ratio can be obtained without any 

loss in data in real time. 

 

Keyword: Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT), MPEG, Video Coding. 

 

1. Introduction: 

Over the past decades, video compression technologies have 

become an integral part of the way we create, communicate 

and consume visual information. Digital video communication 

can be found today in many applications such as broadcast 

services over satellite and terrestrial channels, digital video 

storage, wires and wireless conversational services and etc. 
The data quantity is very large for the digital video and the 

memory of the storage devices and the bandwidth of the 

transmission channel are not infinite, so reducing the amount 

of data needed to reproduce video saves storage space, 

increases access speed and is the only way to achieve motion 

video on digital computers. 

For instance, we have a 720 x 480 pixels per frame, 30 frames 

per second, total 90 minutes full color video, then the full data 

quantity of this video is about 167.96 G bytes. This raw video 

contains an immense amount of data, and communication and 

storage capabilities are limited and expensive. Thus, several 
video compression algorithms had been developed to reduce 

the data quantity and provide the acceptable quality as 

possible as they can. This tutorial starts with an explanation of 

the basic concepts of video compression algorithms and then 

introduces two international standards, known as MPEG-1 and 

MPEG-2. 

Why can video be compressed? The reason is that video 

contains much spatial and temporal redundancy. In a single 

frame, nearby pixels are often correlated with each other. This 

is called spatial redundancy, or the intraframe correlation. 

Another one is temporal redundancy, which means adjacent 

frames are highly correlated, or called the interframe 
correlation. Therefore, our goal is to efficiently reduce spatial 

and temporal redundancy to achieve video compression. 

 

2. The Rise of Efficient Compression: 

The carousel of progress keeps on turning, and today's 

compression algorithms are much more effective than older 

ones. The Cinepak codec that powered early versions of both 

QuickTime and Windows Media video formats aimed no 

higher than getting 320x240 video resolution out of a standard 

CD-ROM drive, which means cramming 2.2Mbps plus audio 

and overhead into a 1.2Mbps traffic stream. Call it 50 percent 
compression on a good day. 

If you never saw a digital video back in the 1990s, you're not 

alone. The files were large and the downloads were slow. And 

while the tiny hard drives of the era would have welcomed 

some video compression with open arms, the other parts of 

that equation were simply not there; an Intel 486 or Pentium 

would grind to a standstill trying to make sense of a simplistic 

Motion JPEG or MPEG-1 video, even at very low resolutions. 

But better days were just around the corner. 

The popular MPEG-2 standard pretty much destroyed 

Cinepak, Intel Indeo, and other early codecs in the late 1990s 

by compressing video streams to as much as 1/30 of the 
original video size while still maintaining acceptable picture 

quality. That's hefty enough to let that old 1x CD-ROM handle 

a full, standard-resolution NTSC signal at about 1Mbps. This 

is the format used in DVD video, many digital broadcasts, and 

most online video streams.  

MPEG-2 can present a 1080p video in a 2Mbps envelope, but 

with horrible blocking artifacts from all the compression if 

you take it that far. These codecs are lossy, which means that 
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you must always balance image quality against file size. HD 

video was not exactly what MPEG-2 was made for. 

By the standards of modern hardware, like recent models of 

Texas Instruments' OMAP processors and anything from Intel 

or AMD, MPEG-2 encoding is a walk in the park. Newer 

formats, not so much. This is why TiVo box still stores DVR 

recordings in this age-old format. 
 

3. Lossless and Lossy Compression Algorithms: 

Compression is used just about everywhere. All the images we 

get on the web are compressed, typically in the JPEG or GIF 

formats, most modems use compression, HDTV will be 

compressed 

using MPEG-2, and several file systems automatically 

compress files when stored, and the rest of us do it by hand. 

The neat thing about compression, as with the other topics we 

will cover in this course, is that the algorithms used in the real 

world make heavy use of a wide set of algorithmic tools, 

including sorting, hash tables, tries, and FFTs. Furthermore, 
algorithms with strong theoretical foundations play a critical 

role in real-world applications. 

The task of compression consists of two components, an 

encoding algorithm that takes a message and generates a 

“compressed” representation (hopefully with fewer bits), and a 

decoding algorithm that reconstructs the original message or 

some approximation of it from the compressed representation. 

These two components are typically intricately tied together 

since they both have to understand the shared compressed 

representation. 

We distinguish between lossless algorithms, which can 
reconstruct the original message exactly from the compressed 

message, and lossy algorithms, which can only reconstruct an 

approximation of the original message. Lossless algorithms 

are typically used for text, and lossy for images and sound 

where a little bit of loss in resolution is often undetectable, or 

at least acceptable. Lossy is used in an abstract sense, 

however, and does not mean random lost pixels, but instead 

means loss of a quantity such as a frequency component, or 

perhaps loss of noise. For example, one might think that lossy 

text compression would be unacceptable because they are 

imagining missing or switched characters. Consider instead a 

system that reworded sentences into a more standard form, or 
replaced words with synonyms so that the file can be better 

compressed. Technically the compression would be lossy 

since the text has changed, but the “meaning” and clarity of 

the message might be fully maintained, or even improved. In 

fact Strunk and White might argue that good writing is the art 

of lossy text compression. 

Is there a lossless algorithm that can compress all messages? 

There has been at least one patent application that claimed to 

be able to compress all files (messages)—Patent 5,533,051 

titled “Methods for Data Compression”. The patent 

application claimed that if it was applied recursively, a file 
could be reduced to almost nothing. With a little thought we 

should convince ourself that this is not possible, at least if the 

source messages can contain any bit-sequence. We can see 

this by a simple counting argument. Lets consider all 1000 bit 

messages, as an example. There are 21000 different messages 

we can send, each which needs to be distinctly identified by 

the decoder. It should be clear we can’t represent that many 

different messages by sending 999 or fewer bits for all the 

messages — 999 bits would only allow us to send 2999 

distinct messages. The truth is that if any one message is 
shortened by an algorithm, then some other message needs to 

be lengthened. We can verify this in practice by running GZIP 

on a GIF file. It is, in fact, possible to go further and show that 

for a set of input messages of fixed length, if one message is 

compressed, then the average length of the compressed 

messages over all possible inputs is always going to be longer 

than the original input messages. Consider, for example, the 8 

possible 3 bit messages. If one is compressed to two bits, it is 

not hard to convince yourself that two messages will have to 

expand to 4 bits, giving an average of 3 1/8 bits. 

Unfortunately, the patent was granted. 

Because one can’t hope to compress everything, all 
compression algorithms must assume that there is some bias 

on the input messages so that some inputs are more likely than 

others, i.e. that there is some unbalanced probability 

distribution over the possible messages. Most compression 

algorithms base this “bias” on the structure of the messages – 

i.e., an assumption that repeated characters are more likely 

than random characters, or that large white patches occur in 

“typical” images. Compression is therefore all about 

probability. 

When discussing compression algorithms it is important to 

make a distinction between two components: the model and 
the coder. The model component somehow captures the 

probability distribution of the messages by knowing or 

discovering something about the structure of the input. 

The coder component then takes advantage of the probability 

biases generated in the model to generate codes. It does this by 

effectively lengthening low probability messages and 

shortening high-probability messages. A model, for example, 

might have a generic “understanding” of human faces 

knowing that some “faces” are more likely than others (e.g., a 

teapot would not be a very likely face). The coder would then 

be able to send shorter messages for objects that look like 

faces. This could work well for compressing teleconference 
calls. The models in most current real-world compression 

algorithms, however, are not so sophisticated, and use more 

mundane measures such as repeated patterns in text. Although 

there are many different ways to design the model component 

of compression algorithms and a huge range of levels of 

sophistication, the coder components tend to be quite 

generic—in current algorithms are almost exclusively based 

on either Huffman or arithmetic codes. Lest we try to make to 

fine of a distinction here, it should be pointed out that the line 

between model and coder components of algorithms is not 

always well defined. 
It turns out that information theory is the glue that ties the 

model and coder components together. In particular it gives a 

very nice theory about how probabilities are related to 
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information content and code length. As we will see, this 

theory matches practice almost perfectly, and we can achieve 

code lengths almost identical to what the theory predicts. 

Another question about compression algorithms is how does 

one judge the quality of one versus another. In the case of 

lossless compression there are several criteria we can think of, 

the time to compress, the time to reconstruct, the size of the 
compressed messages, and the generality—i.e., does it only 

work on Shakespeare or does it do Byron too. In the case of 

lossy compression the judgment is further complicated since 

we also have to worry about how good the lossy 

approximation is. There are typically tradeoffs between the 

amount of compression, the runtime, and the quality of the 

reconstruction. Depending on your application one might be 

more important than another and one would want to pick your 

algorithm appropriately. Perhaps the best attempt to 

systematically compare lossless compression algorithms is the 

Archive Comparison Test (ACT) by Jeff Gilchrist. It reports 

times and compression ratios for 100s of compression 
algorithms over many databases. It also gives a score based on 

a weighted average of runtime and the compression ratio. 

 

4. Result and Discussion: 

The simulation on videos comression is performed using 

matlab tool .We have taken videos from avi files present in 

matlab. About 5 videos are taken to check the compression 

ratio and PSNR for both cases using DCT based compression 

and with ACC DCT based compression. 

Before consederirng the results of video we tested the 

proposed algorithm on single image to demonstrate the steps 
wise methodology and its uses in compression technique. 

For this purpose we have taken a gray scale image after 

subsampling with each plane must be split into 8×8 blocks. 

Depending on chroma subsampling, this yields (Minimum 

Coded Unit) MCU blocks of size 8×8 (4:4:4 – no 

subsampling), 16×8 (4:2:2), or most commonly 16×16 (4:2:0). 

In video compression MCUs are called macroblocks. 

Discrete cosine transform: Next, each 8×8 block of each 

component (Y, Cb, Cr) is converted to a frequency-domain 

representation, using a normalized, two-dimensional type-II 

discrete cosine transform (DCT) (figure 1). 

 

 
Fig. 1: The 8×8 sub-image shown in 8-bit grayscale 

 

STEP-1:Taking group of pictures from video frames (figure 1) 

.GOP=10 

 

 
Fig 2: GOP from 1 to 10 from video vipmen.avi 

 

 
Fig. 3: GOP from 11 to 20 from video vipmen.avi 

 

Similar to fig. 2 we take 10 GOP at each iteration as shown in 

figure 3 at next iteration GOP from 11 to 20 are taken. 

  

STEP- 2: Construction of accordion image: From each GOP 

we combine the picture to make a single accordian image prior 

to compression.An example of how to make accordian 

image/matrix is given in figure 4.For simplicity we have taken 

GOP =3 and matrix of 3X3.  

  

1 2 3 4 5

6 7 8 9 10

GOP 1 to 10

(a)Iacc Accordian Matrix

(a)

11 12 13 14 15

16 17 18 19 20

GOP 11 to 20

(a)Iacc Accordian Matrix

(a)

http://en.wikipedia.org/wiki/File:JPEG_example_subimage.svg
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Fig. 4: Accordion Representation Example 

 

Similar to example of figure 4 we have constructed accordion 

image of GOP =10 .Where each image in a group was of size 

120x160x3 after getting the accordion image we get an image 

of 1200x160x3. One of the accordion image is shown in figure 

5. This accordion image is obtained from GOP 11 to 20 
(figure 2).  

 

 
Fig. 5: Accordian Image obtained from GOP 11 to 20. 

 

STEP- 3: Compresion and Decoding: After getting the 
accordion image we follow the video compression for each 

GOP. Table 1 shows the results of video compression for each 

iteration. 

TABLE 1 

GROUP OF 

PICTURE 

COMPRESSION 

RATE 

PSNR 

1 to 10  1.3326   Bits / pixel 39.0815 

11 to 20  1.443   Bits / pixel 38.3896 

21 to 30  

 

1.7229   Bits / pixel 36.7183       

31 to 40 1.919   Bits / pixel 35.9532       

 41 to 50  

 

   1.7385   Bits / pixel  

 

36.7006       

51 to 60    1.5453   Bits / pixel  

 

37.9957 

…………… ……………. …………

…… 

211 to 220 1.7281   Bits / pixel 36.8345       

  221 to 230    1.8248   Bits / pixel      

36.7684       

231 to 240 1.7502   Bits / pixel 36.2355         

241 to 250 1.9454   Bits / pixel 34.45       

251 to 260 2.7633   Bits / pixel 38.8741       

261 to 270 1.3844   Bits / pixel 37.6222 

  

Average PSNR= 37.1403 

NET Compression=Original file/Compressed file = 13.8992 

Step 4: Decompression and Decoding: After compression we 

can perform decompression of video to compare the mean 
square error. Figure 5 shows the accordion image obtained 

after reconstruction from compressed video.  

 

5. Conclusion: 

In  this  work,  we  successfully  extended  and  implemented  

a  ACC-DCT based video compression using up/down 

sampling  algorithm  on  MATLAB  and  provided 

experimental  results  to  compare  our  method  with the DCT 

based compression of existing  methods.  We  not  only  

improved  the  coding efficiency  in  the  proposed  encoding  

algorithm  but  also  it reduces  complexity.   

As  discussed  in  the  results shown for different videos,  
proposed  method  provides  benefits  of  rate-PSNR 

performance  at  the  good  quality  of  base  layer  and  low 

quality  of  enhancement  layer.  We took 3 videos and 

performed DCT based and ACC DCT based video 

compression. The compression ration and PSNR are taken as 

quality measurement criteria. 
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Fig. 5.9: Original Accordian imager and reconstructed image w. 

 

 

 

 

 

 

 

 

 

 

PLOT 

After decompression we can see figure 5.9 a and b.In both images we can see that there is very slight difference in color and contrast 

of both images.There is no large degradation in reconstructed video. 

 

Step 4:Reconstruction of Original image from accordion image: In the figure 5.10 we have shown the image obtained after 

reconstruction .We can compare both video frames quality, color contrast and losses. 

GOP 11 to 20

(a)

(b) Iacc Reconstructed 

(b)
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Fig 5.10: 

Original video before compression

 Video obtained after decompression/decoding 
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Fig 5.11:Plot for vipmen.avi video for compression ratio (above) and PSNR (below) 

Figure 5.11 indicates the values of compression ration and PSNR obtained with respect to each frame. 

Similar to ACC-DCT compression we performed only DCT compression on same videos to analyze our result in reference to 

compression ration and PSNR. WE obtained following results for DCT based video compression. 

DCT video compression:( vipmen video) 

Average PSNR= 35.8446 

NET Compression=Original file/Compressed file = 9.6751 
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Fig. 5.12: 

Compression ration and PSNR using DCT video compression for vipmen.avi 

Accordian-DCT (viptraffic video) 
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