
International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

An Advanced Video Compression Method using

Accordion DCT Scheme
Pragya Singh, Yogendra Pratap Singh

Computer Science and Engineering,

Goel Institute Of Technology and Management, Lucknow

pragya2416@gmail.com, yogendra.p.simgh@goel.edu.in

Abstract: Video compression technique is now mature as is

proven by the large number of applications that make use

of DWT and DCT technology. Now day’s lot of video

compression techniques proposed. With efficient

compression techniques, a significant reduction in file size

can be achieved with little or no adverse effect on the

visual quality. This paper gives the idea about for video

compression technique but not very much good for the real

time video compression techniques either have a demerit

of loosely techniques like DCT and DWT but here we are

going to present a noble technique in which we will use

object position change finding algorithm to get our video

process in real time and having lossless decompressions.

Compression is done in real time, such a way while

maintaining the benefits of keeping all of the information

of the source and also the benefits of compression during

the production process. "Lossless" means that the output

from the decompressor is bitfor-bit identical with the

original input to the compressor. The decompressed video

stream should be completely identical to original. In

addition to providing improved coding efficiency in real

time the technique provides the ability to selectively

encode, decode, and manipulate individual objects in a

video stream. The technique used results in video coding

that a high compression ratio can be obtained without any

loss in data in real time.

Keyword: Discrete Cosine Transform (DCT), Discrete

Wavelet Transform (DWT), MPEG, Video Coding.

1. Introduction:

Over the past decades, video compression technologies have

become an integral part of the way we create, communicate

and consume visual information. Digital video communication

can be found today in many applications such as broadcast

services over satellite and terrestrial channels, digital video

storage, wires and wireless conversational services and etc.
The data quantity is very large for the digital video and the

memory of the storage devices and the bandwidth of the

transmission channel are not infinite, so reducing the amount

of data needed to reproduce video saves storage space,

increases access speed and is the only way to achieve motion

video on digital computers.

For instance, we have a 720 x 480 pixels per frame, 30 frames

per second, total 90 minutes full color video, then the full data

quantity of this video is about 167.96 G bytes. This raw video

contains an immense amount of data, and communication and

storage capabilities are limited and expensive. Thus, several
video compression algorithms had been developed to reduce

the data quantity and provide the acceptable quality as

possible as they can. This tutorial starts with an explanation of

the basic concepts of video compression algorithms and then

introduces two international standards, known as MPEG-1 and

MPEG-2.

Why can video be compressed? The reason is that video

contains much spatial and temporal redundancy. In a single

frame, nearby pixels are often correlated with each other. This

is called spatial redundancy, or the intraframe correlation.

Another one is temporal redundancy, which means adjacent

frames are highly correlated, or called the interframe
correlation. Therefore, our goal is to efficiently reduce spatial

and temporal redundancy to achieve video compression.

2. The Rise of Efficient Compression:

The carousel of progress keeps on turning, and today's

compression algorithms are much more effective than older

ones. The Cinepak codec that powered early versions of both

QuickTime and Windows Media video formats aimed no

higher than getting 320x240 video resolution out of a standard

CD-ROM drive, which means cramming 2.2Mbps plus audio

and overhead into a 1.2Mbps traffic stream. Call it 50 percent
compression on a good day.

If you never saw a digital video back in the 1990s, you're not

alone. The files were large and the downloads were slow. And

while the tiny hard drives of the era would have welcomed

some video compression with open arms, the other parts of

that equation were simply not there; an Intel 486 or Pentium

would grind to a standstill trying to make sense of a simplistic

Motion JPEG or MPEG-1 video, even at very low resolutions.

But better days were just around the corner.

The popular MPEG-2 standard pretty much destroyed

Cinepak, Intel Indeo, and other early codecs in the late 1990s

by compressing video streams to as much as 1/30 of the
original video size while still maintaining acceptable picture

quality. That's hefty enough to let that old 1x CD-ROM handle

a full, standard-resolution NTSC signal at about 1Mbps. This

is the format used in DVD video, many digital broadcasts, and

most online video streams.

MPEG-2 can present a 1080p video in a 2Mbps envelope, but

with horrible blocking artifacts from all the compression if

you take it that far. These codecs are lossy, which means that

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

you must always balance image quality against file size. HD

video was not exactly what MPEG-2 was made for.

By the standards of modern hardware, like recent models of

Texas Instruments' OMAP processors and anything from Intel

or AMD, MPEG-2 encoding is a walk in the park. Newer

formats, not so much. This is why TiVo box still stores DVR

recordings in this age-old format.

3. Lossless and Lossy Compression Algorithms:

Compression is used just about everywhere. All the images we

get on the web are compressed, typically in the JPEG or GIF

formats, most modems use compression, HDTV will be

compressed

using MPEG-2, and several file systems automatically

compress files when stored, and the rest of us do it by hand.

The neat thing about compression, as with the other topics we

will cover in this course, is that the algorithms used in the real

world make heavy use of a wide set of algorithmic tools,

including sorting, hash tables, tries, and FFTs. Furthermore,
algorithms with strong theoretical foundations play a critical

role in real-world applications.

The task of compression consists of two components, an

encoding algorithm that takes a message and generates a

“compressed” representation (hopefully with fewer bits), and a

decoding algorithm that reconstructs the original message or

some approximation of it from the compressed representation.

These two components are typically intricately tied together

since they both have to understand the shared compressed

representation.

We distinguish between lossless algorithms, which can
reconstruct the original message exactly from the compressed

message, and lossy algorithms, which can only reconstruct an

approximation of the original message. Lossless algorithms

are typically used for text, and lossy for images and sound

where a little bit of loss in resolution is often undetectable, or

at least acceptable. Lossy is used in an abstract sense,

however, and does not mean random lost pixels, but instead

means loss of a quantity such as a frequency component, or

perhaps loss of noise. For example, one might think that lossy

text compression would be unacceptable because they are

imagining missing or switched characters. Consider instead a

system that reworded sentences into a more standard form, or
replaced words with synonyms so that the file can be better

compressed. Technically the compression would be lossy

since the text has changed, but the “meaning” and clarity of

the message might be fully maintained, or even improved. In

fact Strunk and White might argue that good writing is the art

of lossy text compression.

Is there a lossless algorithm that can compress all messages?

There has been at least one patent application that claimed to

be able to compress all files (messages)—Patent 5,533,051

titled “Methods for Data Compression”. The patent

application claimed that if it was applied recursively, a file
could be reduced to almost nothing. With a little thought we

should convince ourself that this is not possible, at least if the

source messages can contain any bit-sequence. We can see

this by a simple counting argument. Lets consider all 1000 bit

messages, as an example. There are 21000 different messages

we can send, each which needs to be distinctly identified by

the decoder. It should be clear we can’t represent that many

different messages by sending 999 or fewer bits for all the

messages — 999 bits would only allow us to send 2999

distinct messages. The truth is that if any one message is
shortened by an algorithm, then some other message needs to

be lengthened. We can verify this in practice by running GZIP

on a GIF file. It is, in fact, possible to go further and show that

for a set of input messages of fixed length, if one message is

compressed, then the average length of the compressed

messages over all possible inputs is always going to be longer

than the original input messages. Consider, for example, the 8

possible 3 bit messages. If one is compressed to two bits, it is

not hard to convince yourself that two messages will have to

expand to 4 bits, giving an average of 3 1/8 bits.

Unfortunately, the patent was granted.

Because one can’t hope to compress everything, all
compression algorithms must assume that there is some bias

on the input messages so that some inputs are more likely than

others, i.e. that there is some unbalanced probability

distribution over the possible messages. Most compression

algorithms base this “bias” on the structure of the messages –

i.e., an assumption that repeated characters are more likely

than random characters, or that large white patches occur in

“typical” images. Compression is therefore all about

probability.

When discussing compression algorithms it is important to

make a distinction between two components: the model and
the coder. The model component somehow captures the

probability distribution of the messages by knowing or

discovering something about the structure of the input.

The coder component then takes advantage of the probability

biases generated in the model to generate codes. It does this by

effectively lengthening low probability messages and

shortening high-probability messages. A model, for example,

might have a generic “understanding” of human faces

knowing that some “faces” are more likely than others (e.g., a

teapot would not be a very likely face). The coder would then

be able to send shorter messages for objects that look like

faces. This could work well for compressing teleconference
calls. The models in most current real-world compression

algorithms, however, are not so sophisticated, and use more

mundane measures such as repeated patterns in text. Although

there are many different ways to design the model component

of compression algorithms and a huge range of levels of

sophistication, the coder components tend to be quite

generic—in current algorithms are almost exclusively based

on either Huffman or arithmetic codes. Lest we try to make to

fine of a distinction here, it should be pointed out that the line

between model and coder components of algorithms is not

always well defined.
It turns out that information theory is the glue that ties the

model and coder components together. In particular it gives a

very nice theory about how probabilities are related to

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

information content and code length. As we will see, this

theory matches practice almost perfectly, and we can achieve

code lengths almost identical to what the theory predicts.

Another question about compression algorithms is how does

one judge the quality of one versus another. In the case of

lossless compression there are several criteria we can think of,

the time to compress, the time to reconstruct, the size of the
compressed messages, and the generality—i.e., does it only

work on Shakespeare or does it do Byron too. In the case of

lossy compression the judgment is further complicated since

we also have to worry about how good the lossy

approximation is. There are typically tradeoffs between the

amount of compression, the runtime, and the quality of the

reconstruction. Depending on your application one might be

more important than another and one would want to pick your

algorithm appropriately. Perhaps the best attempt to

systematically compare lossless compression algorithms is the

Archive Comparison Test (ACT) by Jeff Gilchrist. It reports

times and compression ratios for 100s of compression
algorithms over many databases. It also gives a score based on

a weighted average of runtime and the compression ratio.

4. Result and Discussion:

The simulation on videos comression is performed using

matlab tool .We have taken videos from avi files present in

matlab. About 5 videos are taken to check the compression

ratio and PSNR for both cases using DCT based compression

and with ACC DCT based compression.

Before consederirng the results of video we tested the

proposed algorithm on single image to demonstrate the steps
wise methodology and its uses in compression technique.

For this purpose we have taken a gray scale image after

subsampling with each plane must be split into 8×8 blocks.

Depending on chroma subsampling, this yields (Minimum

Coded Unit) MCU blocks of size 8×8 (4:4:4 – no

subsampling), 16×8 (4:2:2), or most commonly 16×16 (4:2:0).

In video compression MCUs are called macroblocks.

Discrete cosine transform: Next, each 8×8 block of each

component (Y, Cb, Cr) is converted to a frequency-domain

representation, using a normalized, two-dimensional type-II

discrete cosine transform (DCT) (figure 1).

Fig. 1: The 8×8 sub-image shown in 8-bit grayscale

STEP-1:Taking group of pictures from video frames (figure 1)

.GOP=10

Fig 2: GOP from 1 to 10 from video vipmen.avi

Fig. 3: GOP from 11 to 20 from video vipmen.avi

Similar to fig. 2 we take 10 GOP at each iteration as shown in

figure 3 at next iteration GOP from 11 to 20 are taken.

STEP- 2: Construction of accordion image: From each GOP

we combine the picture to make a single accordian image prior

to compression.An example of how to make accordian

image/matrix is given in figure 4.For simplicity we have taken

GOP =3 and matrix of 3X3.

1 2 3 4 5

6 7 8 9 10

GOP 1 to 10

(a)Iacc Accordian Matrix

(a)

11 12 13 14 15

16 17 18 19 20

GOP 11 to 20

(a)Iacc Accordian Matrix

(a)

http://en.wikipedia.org/wiki/File:JPEG_example_subimage.svg

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig. 4: Accordion Representation Example

Similar to example of figure 4 we have constructed accordion

image of GOP =10 .Where each image in a group was of size

120x160x3 after getting the accordion image we get an image

of 1200x160x3. One of the accordion image is shown in figure

5. This accordion image is obtained from GOP 11 to 20
(figure 2).

Fig. 5: Accordian Image obtained from GOP 11 to 20.

STEP- 3: Compresion and Decoding: After getting the
accordion image we follow the video compression for each

GOP. Table 1 shows the results of video compression for each

iteration.

TABLE 1

GROUP OF

PICTURE

COMPRESSION

RATE

PSNR

1 to 10 1.3326 Bits / pixel 39.0815

11 to 20 1.443 Bits / pixel 38.3896

21 to 30

1.7229 Bits / pixel 36.7183

31 to 40 1.919 Bits / pixel 35.9532

 41 to 50

 1.7385 Bits / pixel

36.7006

51 to 60 1.5453 Bits / pixel

37.9957

…………… ……………. …………

……

211 to 220 1.7281 Bits / pixel 36.8345

 221 to 230 1.8248 Bits / pixel

36.7684

231 to 240 1.7502 Bits / pixel 36.2355

241 to 250 1.9454 Bits / pixel 34.45

251 to 260 2.7633 Bits / pixel 38.8741

261 to 270 1.3844 Bits / pixel 37.6222

Average PSNR= 37.1403

NET Compression=Original file/Compressed file = 13.8992

Step 4: Decompression and Decoding: After compression we

can perform decompression of video to compare the mean
square error. Figure 5 shows the accordion image obtained

after reconstruction from compressed video.

5. Conclusion:

In this work, we successfully extended and implemented

a ACC-DCT based video compression using up/down

sampling algorithm on MATLAB and provided

experimental results to compare our method with the DCT

based compression of existing methods. We not only

improved the coding efficiency in the proposed encoding

algorithm but also it reduces complexity.

As discussed in the results shown for different videos,
proposed method provides benefits of rate-PSNR

performance at the good quality of base layer and low

quality of enhancement layer. We took 3 videos and

performed DCT based and ACC DCT based video

compression. The compression ration and PSNR are taken as

quality measurement criteria.

References:

[1] Iain E. G. Richardson, H.264 and MPEG-4 Video

Compression, Video Coding for Next-generation Multimedia,

the Robert Gordon University, Aberdeen, UK, 2003.

GOP 11 to 20

(a)

(b) Iacc Reconstructed

(b)

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

[2] Ze-Nian Li and M. S. Drew, “Fundamentals of

Multimedia, ” Prentice Hall, 2004.

[3] Yun Q.Shi and Huifang Sun, “Image and Video

Compression for Multimedia Engineering: Fundamentals,

Algorithms, and Standards”, CRC press, 2000.

[4] Yao Wand, Jorn Ostermann and Ya-Qin Zhang, “Video

Processing and Communications”, Prentice Hall, 2007.
[5] Richardson, Lain E. G., “Video Codec Design: Developing

Image and Video Compression Systems”, John Wiley & Sons

Inc, 2002.

[6] Barry G, Haskell, Atul Puri and Arun N. Netravali,

“Digital Video : An Introduction to MPEG-2”, Boston :

Kluwer Academic, 1999.

[7] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the H.264/AVC video coding standard”, IEEE

Trans. on Circuits and systems for video Technology, vol. 13,

no. 7, pp. 560-576, July 2003.

[8] G. Sullivan and T. Wiegand, “Video Compression - From

Concepts to theH.264/AVC Standard”, Proceedings of the
IEEE, Special Issue on Advances in Video Coding and

Delivery, December 2004.

[9] T. Sikora, “MPEG-4 video standard verification model,”

IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp.

19-31, Feb 1997.

[10] R. Koenen, Editor, “Overview of the MPEG-4 Standard,”

ISO/IEC JTC/SC29/WG21, MPEG-99-N2925, March 1999,

Seoul, South Korea.

[11] T. Sikora, “MPEG-4 very low bit rate video,” IEEE

International Symposium on Circuits and Systems, ISCAS

’97, vol. 2, pp. 1440-1443, 1997.

[12] Y. Ninomiya, Y. Ohtsuka, Y. Izumi, S. Gohshi, and Y.

Iwadate, An HDTV broadcasting system utilizing a bandwidth

compression technique-MUSE, IEEE Trans Broadcasting 33

(1987), 130–160.
[13] D. Le Gall, MPEG: A video compression standard for

multimedia applications, Commun ACM 34 (1991), 46–58.

[14] H. Schwarz, and T. Wiegand, The emerging JVT/H. 26L

video coding standard, Proc IBC, 2002.

[15] H. Jung, K. Sung, K.S. Nayak, E.Y. Kim, and J.C. Ye, k-t

FOCUSS: A general compressed sensing framework for high

resolution dynamic MRI, Magn Reson Med 61 (2009), 103–

116.

[16] Z. Liang, and P. Lauterbur, An efficient method for

dynamic magnetic resonance imaging, IEEE Trans Med

Imaging 13 (1994), 677–686.

[17] H. Jung, J. Park, J. Yoo, and J.C. Ye, Radial k-t FOCUSS
for high-resolution cardiac cine MRI, Magn Reson Med 63

(2010), 68–78.

[18] K. Ramchandran, A. Ortega, and M. Vetterli, Bit

allocation for dependent quantization with applications to

multiresolution and MPEG video coders, IEEE Trans Image

Process 3 (1994), 533–545.

[19] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero,

Distributed video coding, Proc IEEE 93 (2005), 71–83.

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig. 5.9: Original Accordian imager and reconstructed image w.

PLOT

After decompression we can see figure 5.9 a and b.In both images we can see that there is very slight difference in color and contrast

of both images.There is no large degradation in reconstructed video.

Step 4:Reconstruction of Original image from accordion image: In the figure 5.10 we have shown the image obtained after

reconstruction .We can compare both video frames quality, color contrast and losses.

GOP 11 to 20

(a)

(b) Iacc Reconstructed

(b)

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig 5.10:

Original video before compression

 Video obtained after decompression/decoding

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig 5.11:Plot for vipmen.avi video for compression ratio (above) and PSNR (below)

Figure 5.11 indicates the values of compression ration and PSNR obtained with respect to each frame.

Similar to ACC-DCT compression we performed only DCT compression on same videos to analyze our result in reference to

compression ration and PSNR. WE obtained following results for DCT based video compression.

DCT video compression:(vipmen video)

Average PSNR= 35.8446

NET Compression=Original file/Compressed file = 9.6751

0 5 10 15 20 25 30
5

10

15

20
 compression ratio vs Frame

c
o
m

p
re

s
s
io

n
 r

a
ti
o

0 5 10 15 20 25 30
34

36

38

40
PSNR vs Frame

P
S

N
R

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig. 5.12:

Compression ration and PSNR using DCT video compression for vipmen.avi

Accordian-DCT (viptraffic video)

0 50 100 150 200 250 300
8

9

10

11

12
 compression ratio vs Frame

c
o
m

p
re

s
s
io

n
 r

a
ti
o

0 50 100 150 200 250 300
34

35

36

37

38
PSNR vs Frame

P
S

N
R

