
International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

A Review on Software Defect Prediction Using

Machine Learning Techniques

Karishma Sahni
1
, Dr. Ganesh Chandra

2

Computer Science and Engineering,

Goel Institute of Technology & Management, Lucknow, India

karishmasahni903@gmail.com

Abstract: Software is playing an increasingly vital role in

many industries. However, defects are not only

inconvenient and annoying, but can also have serious

consequences for software systems, especially for mission-

critical systems. Therefore, software defect prediction

models are useful for understanding, evaluating and

improving the quality of a software system. Machine

learning techniques have been employed to make

predictions about the defectiveness of software

components by exploiting historical data of software

components and their defects. In order to predict software

defects, many studies using distance-based classification

algorithms with Mahalanobis distance function have been

proposed. However, the common implementations of the

Mahalanobis distance function do not take into account

the label information (defective or defect-free) from the

training data.

Keywords: ANSI, Machine Learning, Software Defect,

SRGM

1. Introduction:

Business applications which are critical in nature require

reliable software, but developing such software’s is a key

challenge which our software industry faces today. With the
increasing complexity of the software these days, achieving

software reliability is hard to achieve. The primary goal of

software reliability modeling is to find out the probability of a

system failing in given time interval or the expected time span

between successive failures

Software reliability is defined as the probability of failure-free

software operation for a specified period of time in a specified

environment (ANSI definition). Software reliability modeling

has gained a lot of importance in the recent years. Criticality

of software in many of the present day applications has led to

a tremendous increase in the amount of work being carried out

in this area. The use of intelligent neural network and hybrid
techniques in place of the traditional statistical techniques

have shown a remarkable improvement in the prediction of

software reliability in the recent years. Among the intelligent

and the statistical techniques it is not easy to identify the best

one since their performance varies with the change in data.

SRGM has been used for predicting and estimating number of

errors remaining in the software

ISO 9126 defines software quality as “the totality of features

and characteristics of software product that bears on its ability
to satisfy stated or implied needs”

While ISO 25000 takes the following approach to quality

“Capability of software products to satisfy stated and implied

needs when used under specified conditions”

Software quality:- is the degree of conformance to explicit or

implicit requirements and expectations.

 Explicit: clearly defined and documented

 Implicit: not clearly defined and documented but

indirectly suggested

 Requirements: business/product/software

requirements.
 Expectations: mainly end-user expectations.

Five of reasons quality is important to measure include:

 Safety – Poor quality in software can be hazardous to

human life and safety.

 Cost – Quality issues cost money to fix.

 Customer Satisfaction (internal) – Poor quality leads

stakeholders to look for someone else to do your job.

 Customer Satisfaction (external) – Software products

that don’t work, are hard to use.

 Future Value – Avoiding quality problems increases

the amount of time available for the next project or
the next set of features.

Based on these models, the Consortium for IT Software

Quality has defined five major desirable structural

characteristics needed for a piece of software to provide

business value:

 Reliability,

 Efficiency,

 Security,

 Maintainability

 Size.

Software metrics it has been used for monitoring and

controlling software process, asses and/or improves software
quality, metrics collection and analysis is part of daily work

activities in large software development organizations.

2. Related Work:

“Machine Learning Approach for Quality Assessment and

Prediction in Large Software Organizations” (Rakesh Rana,

and Miroslaw Staron) [1], Importance of software is being

rising day by day and its complexity such as measuring,

maintaining and increasing software quality. Software metrics

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

provide a quantitative means to measure and thus control

various attributes of software systems. Assessing software

quality early in the development process is essential to identify

and allocate resources where they are needed most. Software

quality, mainly the attributes related to dependability are even

more important when developing software for systems deemed

as safety, business and/or mission critical. Using machine
learning techniques in conjunction to ISO/IEC 15939

measurement information model we can model overall quality

of given software module/product/project. An algorithm or

calculation combining one or more base and/or derived

measures with associated decision criteria. It is based on an

understanding of, or assumptions about, the expected

relationship between the component measures and/or their

behavior over time. Models produce estimates or evaluations

relevant to defined information needs. The scale and

measurement method affect the choice of analysis techniques

or models used to produce indicators. As software becomes

more integral part of our daily lives and its complexity
increases - monitoring, assessing and improving software

quality also becomes ever more important.

“Machine Learning-based Software Quality Prediction

Models: State of the Art” (Hamdi A. Al-Jamimi and Moataz

Ahmed) [2], Quantification of parameters that affecting the

quality of software and machine learning techniques being

used to predict the quality of software. Software quality means

a degree and satisfaction of the customers identified needs.ML

techniques have been utilized in many different problem

domains as this field concentrates on building algorithms.
Support Vector Machine, SVM for predicting the software

fault-proneness modules. SVM being employed to the

maintenance effort prediction. Bayesian network (BN) has

been used in various studies in SWE area due its ability to

integrate both empirical data and expert opinions. Neural

networks (NN) as a tool for predicting the software faults. The

relationship between the internal and external Quality

attributes is surrounded with impression and uncertainty,

different studies in the literature have made attempts to utilize

the capability of fuzzy logic (FL) to estimate the software

quality. current software quality prediction modelling

approaches utilizing the two major sources of knowledge for
building the models. Pre-requisite to effective combination of

knowledge sources is the transparency of the model. The

survey revealed that none of the current models address the

model transparency issue.

 “A Literal Review of Software Quality Assurance” (C.

SenthilMurugan S. Prakasam) [3], Software development and

maintenance is used to make the error-free Software and also

concentrate on time-consuming and complex activity. To

evaluate the quality of a software product and to keep its level

high is much more difficult than to do them for the other
industrial products. For maintaining the quality, performance,

speed, efficiency and cost of the software the Software quality

Assurance activities, principles and its methods are

implemented in the early stages of software engineering

development phases.A software system exists for one reason:

to provide value to its users. Seven principles of software

development process being performed to achieve the target.

Different software applications require different approaches

when it comes to testing, but some of the most common tasks

in software QA include: PPQA audits, Peer Reviews,
Validation testing, Data comparison, Stress testing,

Conformance testing, Load testing, Usability testing,

Robustness testing. the Software Quality Assurance concepts

that are used to make the error-free Software and concentrate

on complex activities and used to complete in time and in cost

estimation is prevented. the early stages of software

engineering development phases, because of this activity the

software developer get the knowledge about the software what

he is going to develop, it may reduce the rework and failures

of the softwares and satisfy the customer’s all requirements.

“Review of Improving Software Quality using Machine
Learning Algorithms,” (Jyoti Devi, Nancy Seghal) [4],

Software is a process and maintains continuous change to

improve the functionality and effectiveness of the software

quality. During the life cycle of software various problems

arises like advanced planning, well documentation and proper

process control. This problem may result in not achieving the

software quality as desired. With respect to competition in the

market it is necessary to remove this problem with the help of

software engineering. Quality software is reasonably bugs or a

defect free, delivered on time and within budget, meets

requirements and/or expectations, and is maintainable. The
software attributes are categorized two type’s internal and

external quality. The internal quality like efficiency,

maintainability, testability, flexibility, reusability etc. The

external quality like integrity, usability, reliability and

accuracy etc. Software quality management split into three

main activities: Quality assurance, Quality planning, quality

control. A machine learning algorithms are developed to build

machine learning models and important machine learning

process. In this paper it has been discussed three classifier like

decision tree, naïve bayes and support vector machine.

Machine learning checks the prediction performance with the

help of various performance measures: Precision, Recall,
Accuracy, F-measure, Roc (receiver operating characteristics).

In software development life cycle, maximum effort and cost

is consumed on the testing and maintenance. the machine

learning techniques like naïve bayes, decision tree and support

vector machine algorithms been used for improving the

software quality. Further different machine learning algorithm

used to improve software quality and improve the

performance in terms of precision, recall and Roc.

Several machine learning techniques such as ANNs, SVMs,

CCNN, DTs, Group Method of Data Handling(GMDH)

Polynomial network, Gene Expression Programming (GEP),
Genetic Programming (GP), FIS and Dynamic evolving

neuro-fuzzy inference system (DENFIS) have been proposed

in the literature for solving various classification and

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

regression problems (Karunanithi et al. 1992; Kohavi 1995;

Phillip 2003; Aggarwal et al. 2006, 2009; Jung Hua 2010;

Ping and Hong 2006; Malhotra et al. 2009, 2011; Eduardo et

al. 2010; Raj and Ravi 2008). There are few studies applied

for the prediction of software reliability using machine

learning methods based on past and present failure data of

software. Some useful empirical studies based on multivariate
linear regression and neural network methods have been

carried out for prediction of software reliability growth trends.

Although, multivariate linear regression method can address

linear relationship but require large sample size and more

independent variables (Jung Hua 2010). Many software

reliability prediction models using ANNs have been applied

for the prediction of software reliability successfully

(Karunanithi et al. 1992; Singh and Kumar 2010c, d).

However, effectiveness of neural network based prediction

models depend on the behaviour of dataset that is basically of

fluctuating nature. Therefore ANNs suffers from overfitting

the results while dealing with real-life unknown data sets.
Overfitting occurs usually when the parameters of a model are

tuned in such a way that the model fits the training data well

but it has poor accuracy when applied on separate data not

used for training. The applications of SVM based machine

learning approach in place of traditional statistical techniques

has shown a remarkable improvement in the prediction of

software reliability in the recent years (Xingguo and Yanhua

2007). SVM represents state of the art because of their

generalization performance, ease of usability and rigorous

theoretical foundations that practically can be used for

modeling complex software failure behaviour. The design of
SVM is based on the extraction of a subset of the training data

that serves as support vectors and therefore represents a stable

characteristic of the data. The major limitation of SVMs is the

increasing computational and storage requirement with

respect to the number of training examples (Chen et al. 2008).

Ping and Hong (2006) investigated the capabilities of SVMs

for the prediction of software reliability with the help of

simulated annealing algorithms (SA). In their study it is

suggested that SVM model with simulated annealing

algorithms (SVMSA) results in better predictions than other

existing techniques in practice. Yang and Xiang (2007)

suggested an SVM-based model for software reliability
prediction and pointed out that failure data collected from

early phases of software development life cycle is more

appropriate to be used which affect prediction accuracy.

Xingguo and Yanhua (2007) investigated the status of early

prediction methods for software reliability by introducing

SVM. They identified that early prediction model based on

SVM is more accurate in its prediction with better capability

of generalization. The main advantage of DTs are their

descriptive nature, which allows practitioners to interpret the

model’s decision easily compared to other machine learning

techniques such as ANNs and SVMs. While DTs do show
their strengths in various real-life applications, these methods

have rarely been used for predicting software reliability in

practice. The capability of fuzzy logic systems leads to the

achievement of more efficient and decisive system in software

reliability prediction. Due to large computation and low

learning rate of prediction model, the machine learning

techniques using FIS is found to be more effective than

classical machine learning (Mueller and Lemke 1999).

However, the present challenge is to make it even more

efficient by incorporating a fairly new technique which can
improve the prediction rate and require less computational

resources.

SRGM has been used for predicting and estimating number of

errors remaining in the software. The primary goal of software

reliability modeling istofind outtheprobability ofa system

failingin given time interval or the expected time span

between successive failures. In our study, we attempt to

empirically assess the use of ANFIS for predicting the

software failures. Other ML techniques used for predicting

software reliability are FFBPNN, GRNN, SVM, MLP,

Bagging, CFBPNN, IBK, Lin Reg, M5P, RepTree, M5Rules.

Although ANN, SVM
etc. has been previously used in literature (Xingguo and

Yanhua 2007) but for the first time ANFIS has been applied to

cumulative week failure dataset. In this work, in order to

make the most realistic and efficient comparison we have also

analyzed the same data sets for above mentioned ML

techniques. The background of using ANFIS was that if it had

proven empirically to predict the software failures with least

errors in comparison to other above mentioned techniques,

then it may possibly be used as a sound alternative to other

mentioned existing techniques for software reliability

predictions. Also other above mentioned ML techniques were
empirically analysed for the first time together on five

different types of data sets taken altogether.

Several ML techniques have been proposed and applied in the

literature for software reliability modelling and forecasting.

Some of the techniques are Genetic Programming, Gene

Expression Programming, Artificial Neural Network, Decision

Trees, Support Vector Machines, Feed Forward Neural

Network, fuzzy models, Generalized Neural Network etc.

(Malhotra et al. 2011; Xingguo and Yanhua 2007; Hua Jung

2010; Karunanithi et al. 1992; Singh and Kumar 2010d;

Eduardo et al. 2010; Cai et al. 1991; Specht 1991).

Karunanithi et al. (1992) carried out analysis of detailed study
to explain the use of connectionist models in the reliability

growth prediction for the software’s. Cai et al. (1991) focused

on the development of fuzzy software reliability models

instead of probabilistic software reliability models as he says

that reliability is fuzzy in nature. Ho et al. (2003) carried out a

comprehensive study of connectionist models and their

applicability to software reliability prediction and inferred that

these are better as compared to traditional modes. Su and

Huang (2006) had applied neural network for predicting

software reliability. Madsen et al. (2006) focused on the

application of Soft Computing techniques for software
reliability prediction. Pai and Hong (2006) performed

experiments using SVMs for forecasting software reliability.

Despite of recent advances in this field, it was observed that

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

different models have varied predictive reliability capabilities.

Lou et al. (2009) discusses about the software reliability

prediction using relevance vector machine. Yang et al. (2010)

develops a hybrid model using model mining techniques and

genetic algorithms for software reliability prediction. Lo

(2011) discusses about the utilization and applicability of

Auto-Regressive Integrated Moving Average technique and
SVM for reliability prediction. Kumar and Singh (2012)

discusses about the usage of machine learning techniques like

cascade correlation neural network, decision trees and fuzzy

inference system to predict the reliability of software

products. Torrado et al. (2013) described the usage of

Bayesian model together with Gaussian processes to estimate

and predict the number of software failures over time. Park et

al. (2014) talks about the applicability of data driven methods

to identify an appropriate multi-step prediction strategy for

software reliability. Liu et al. (2015) discusses the

applicability of hybridization of Singular Spectrum Analysis

method and Auto Regressive Integrated Moving Average
methodology for prediction of medium and long-term

software failures. Lou et al. (2016) carried out study to

estimate future occurrences of software failures to aid in

maintenance and replacement using Relevance vector

machines which are kernel-based learning methods.

There are many studies about software bug prediction using

machine learning techniques. For example, the study in [5]

proposed a linear Auto-Regression (AR) approach to predict

the faulty modules. The study predicts the software future

faults depending on the historical data of the software

accumulated faults. The study also evaluated and compared
the AR model and with the Known power model (POWM)

used Root Mean Square Error (RMSE) measure. In addition

to, the study used three datasets for evaluation and the results

were promising. The studies in [6], [7] analyzed the

applicability of various ML methods for fault prediction.

Sharma and Chandra [3] added to their study the most

important previous researches about each ML techniques and

the current trends in software bug prediction using machine

learning. This study can be used as ground or step to prepare

for future work in software bug prediction. R. Malhotra in [8]

presented a good systematic review for software bug

prediction techniques, which using Machine Learning (ML).
The paper included a review of all the studies between the

period of 1991 and 2013, analyzed the ML techniques for

software bug prediction models, and assessed their

performance, compared between ML and statistic techniques,

compared between different ML techniques and summarized

the strength and the weakness of the ML techniques. In [9],

the paper provided a benchmark to allow for common and

useful comparison between different bug prediction

approaches. The study presented a comprehensive comparison

between a well-known bug prediction approaches, also

introduced new approach and evaluated its performance by
building a good comparison with other approaches using the

presented benchmark.

D. L. Gupta and K. Saxena [10] developed a model for object-

oriented Software Bug Prediction System (SBPS). The study

combined similar types of defect datasets which are available

at Promise Software Engineering Repository. The study

evaluated the proposed model by using the performance

measure (accuracy). Finally, the study results showed that the

average proposed model accuracy is 76.27%. Rosli et al. [11]
presented an application using the genetic algorithm for fault

proneness prediction. The application obtains its values, such

as the object-oriented metrics and count metrics values from

an open source software project. The genetic algorithm uses

the application's values as inputs to generate rules which

employed to categorize the software modules to defective and

non-defective modules. Finally, visualize the outputs using

genetic algorithm applet. The study in [12] assessed various

object-oriented metrics by used machine learning techniques

(decision tree and neural networks) and statistical techniques

(logical and linear regression). The results of the study

showed that the Coupling Between Object (CBO) metric is the
best metric to predict the bugs in the class and the Line Of

Code (LOC) is fairly well, but the Depth of Inheritance Tree

(DIT) and Number Of Children (NOC) are untrusted metrics.

Singh and Chug [13] discussed five popular ML algorithms

used for software defect prediction i.e. Artificial Neural

Networks (ANNs), Particle Swarm Optimization (PSO),

Decision Tree (DT), Naïve Bayes (NB) and Linear Classifiers

(LC). The study presented important results including that the

ANN has lowest error rate followed by DT, but the linear

classifier is better than other algorithms in term of defect

prediction accuracy, the most popular methods used in
software defect prediction are: DT, BL, ANN, SVM, RBL and

EA, and the common metrics used in software defect

prediction studies are: Line Of Code (LOC) metrics, object

oriented metrics such as cohesion, coupling and inheritance,

also other metrics called hybrid metrics which used both

object oriented and procedural metrics, furthermore the results

showed that most software defect prediction studied used

NASA dataset and PROMISE dataset. Moreover, the studies

in [14], [15] discussed various ML techniques and provided

the ML capabilities in software defect prediction. The studies

assisted the developer to use useful software metrics and

suitable data mining technique in order to enhance the
software quality. The study in [16] determined the most

effective metrics which are useful in defect prediction such as

Response for class (ROC), Line of code (LOC) and Lack Of

Coding Quality (LOCQ). Bavisi et al. [17] presented the most

popular data mining technique (k-Nearest Neighbors, Naïve

Bayes, C-4.5 and Decision trees). The study analyzed and

compared four algorithms and discussed the advantages and

disadvantages of each algorithm. The results of the study

showed that there were different factors affecting the accuracy

of each technique; such as the nature of the problem, the used

dataset and its performance matrix. The researches in [18],
[19] presented the relationship between object-oriented

metrics and fault-proneness of a class.

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Singh et al. [20] showed that CBO, WMC, LOC, and RFC are

effective in predicting defects, while Malhotra and Singh [21]

showed that the AUC is effective metric and can be used to

predict the faulty modules in early phases of software

development and to improve the accuracy of ML techniques.

This paper discusses three well-known machine learning

techniques DT, NB and ANNs. The paper also evaluates the
ML classifiers using various performance measurements (i.e.

accuracy, precision, recall, F-measure and ROC curve). Three

public datasets are used to evaluate the three ML classifiers.

On the other hand, most of the mentioned related works

discussed more ML techniques and different datasets. Some of

the previous studies mainly focused on the metrics that make

the SBP as efficient as possible, while other previous studies

proposed different methods to predict software bugs instead of

ML techniques.

In the last few years many research studies has been carried

out in this area of software reliability modeling and

forecasting. They included the application of neural networks,
fuzzy logic models; Genetic algorithms (GA) based neural

networks, recurrent neural networks, Bayesian neural

networks, and support vector machine (SVM) based

techniques, to name a few. Cai et al. (1991) advocated the

development of fuzzy software reliability models in place of

probabilistic software reliability models (PSRMs). Their

argument was based on the proof that software reliability is

fuzzy in nature. A demonstration of how to develop a fuzzy

model to characterize software reliability was also presented.

Karunanithi et al. (1992) carried out a detailed study to

explain the use of connectionist models in software reliability
growth prediction. It was shown through empirical results that

the connectionist models adapt well across different datasets

and exhibit better predictive accuracy than the well-known

analytical software reliability growth models. Sitte (1999)

made a comparative study of neural networks and parametric-

recalibration models in software reliability prediction and

found neural networks to be much simpler to use and also to

be better predictors. Also, through empirical results it was

shown that the neural network models are better trend

predictors. Ho et al. (2003) performed a comprehensive study

of connectionist models and their applicability to software
reliability prediction and found them to be better and more

flexible than the traditional models. A comparative study was

performed between their proposed modified Elman recurrent

neural network, with the more popular feedforward neural

network, the Jordan recurrent model, and some traditional

software reliability growth models. Numerical results show

that the proposed network architecture performed better than

the other models in terms of predictions. Despite of the recent

advancements in the software reliability growth models, it was

observed that different models have different predictive

capabilities and also no single model is suitable under all
circumstances. Tian and Noore (2005a) proposed an on-line

adaptive software reliability prediction model using

evolutionary connectionist approach based on multiple-

delayed-input single-output architecture. The proposed

approach, as shown by their results, had a better performance

with respect to next-step predictability compared to existing

neural network model for failure time prediction. Tian and

Noore (2005b) proposed an evolutionary neural network

modeling approach for software cumulative failure time

prediction. Their results were found to be better than the

existing neural network models. It was also shown that the
neural network architecture has a great impact on the

performance of the network. According to Bai et al. (2005)

Bayesian networks show a strong ability to adapt in problems

involving complex variant factors. They developed a software

prediction model based on Markov Bayesian networks, and a

method to solve the network model was proposed. Reformat

(2005) proposed an approach leading to a multi technique

knowledge extraction and development of a comprehensive

meta-model prediction system in the area of corrective

maintenance of software. The system was based on evidence

theory and a number of fuzzy-based models. In addition they

carried out a detailed case study for estimating the number of
defects in a medical imaging system using the proposed

approach. Pai and Hong (2006) have applied support vector

machines (SVMs) for forecasting software reliability where

simulated annealing (SA) algorithm was used to select the

parameters

of the SVM model. The experimental results show that the

proposed model gave better predictions than the other

compared methods. Su and Huang (2006) showed how to

apply neural networks to predict software reliability. Further

they made use of the neural network approach to build a

dynamic weighted combinational model (DWCM) and
experimental results show that the proposed model gave

significantly better predictions. Also recently, neural networks

were applied for predicting faults in object-oriented software

(Kanmani et al., 2007). The study showed neural network

models to be performing much better than the statistical

methods. Application of intelligent techniques in place of the

statistical techniques has increased by leaps and bounds in the

recent years. Application of Soft Computing techniques in

software reliability engineering has come up recently (Madsen

et al., 2006). Despite the recent advancements in the software

reliability growth models, it was observed that different

models have different predictive capabilities and also no
single model is suitable under all circumstances. An ensemble

uses the output obtained from the individual constituents as

inputs to it and the data is processed according to the design

of the arbitrators.

3. Conclusion:

We are confident that the research makes positive

contributions towards the goal of improving the performance

of software defect prediction models. Nevertheless, there are

still practical issues that should be addressed to increase the
adoption of our approach in practice. In reality, apart from

class imbalance, data sets extracted from software archives

often contain much correlated information, and pair with

random errors and noise. These lead to a problem called over-

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

fitting occurring when a defect prediction model becomes

excessively complex.

References:

[1]. Rakesh Rana, and Miroslaw Staron (Issue 2015),

“Machine Learning Approach for Quality Assessment and

Prediction in Large Software Organizations,” IEEE
Transaction on

https://ieeexplore.ieee.org/document/7339243.

[2]. Hamdi A. Al-Jamimi and Moataz Ahmed(Issue

2013),“Machine Learning-based Software Quality Prediction

Models: State of the Art,” IEEE Transaction on

https://ieeexplore.ieee.org/document/6579473/

[3]. C. SenthilMurugan S. Prakasam “A Literal Review of

Software Quality Assurance,”

 International Journal of Computer Applications (0975 –

8887) Volume 78 – No.8, September 2013

[4]. Jyoti Devi, Nancy Seghal “Review of Improving Software

Quality using Machine Learning Algorithms,” IJCSMC, Vol.
6, Issue. 3 March 2017.

[5]. A. Sheta and D. Rine, “Modeling Incremental Faults of

Software Testing Process Using AR Models ”, the Proceeding

of 4th International Multi-Conferences on Computer Science

and Information Technology (CSIT 2006), Amman, Jordan.

Vol. 3. 2006.

[6]. D. Sharma and P. Chandra, "Software Fault Prediction

Using MachineLearning Techniques," Smart Computing and

Informatics. Springer, Singapore, 2018. 541-549.

[7]. R. Malhotra, "Comparative analysis of statistical and

machine learning methods for predicting faulty modules,"
Applied Soft Computing 21, (2014): 286-297 [5] Malhotra,

Ruchika. "A systematic review of machine learning

techniques for software fault prediction." Applied Soft

Computing 27 (2015): 504-518.

[8]. D'Ambros, Marco, Michele Lanza, and Romain Robbes.

"An extensive comparison of bug prediction approaches."

Mining Software Repositories (MSR), 2010 7th IEEE

Working Conference on. IEEE, 2010.

[9]. Gupta, Dharmendra Lal, and Kavita Saxena. "Software

bug prediction using object-oriented metrics." Sādhanā

(2017): 1-15..

[10]. M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S.
Moham, "The Design of a Software Fault Prone Application

Using Evolutionary Algorithm," IEEE Conference on Open

Systems, 2011.

[11]. T. Gyimothy, R. Ferenc and I. Siket, "Empirical

Validation of ObjectOriented Metrics on Open Source

Software for Fault Prediction," IEEE Transactions On

Software Engineering, 2005.

[12]. Singh, Praman Deep, and Anuradha Chug. "Software

defect prediction analysis using machine learning algorithms."

7th International Conference on Cloud Computing, Data

Science & EngineeringConfluence, IEEE, 2017.
[13]. M. C. Prasad, L. Florence and A. Arya, "A Study on

Software Metrics based Software Defect Prediction using

Data Mining and Machine Learning Techniques,"

International Journal of Database Theory and Application, pp.

179-190, 2015.

[14]. Okutan, Ahmet, and Olcay Taner Yıldız. "Software

defect prediction using Bayesian networks." Empirical

Software Engineering 19.1 (2014): 154-181.

[15]. Bavisi, Shrey, Jash Mehta, and Lynette Lopes. "A

Comparative Study of Different Data Mining Algorithms."
International Journal of Current Engineering and Technology

4.5 (2014).

[16]. Y. Singh, A. Kaur and R. Malhotra, "Empirical

validation of objectoriented metrics for predicting fault

proneness models," Software Qual J, p. 3–35, 2010.

[17]. Malhotra, Ruchika, and Yogesh Singh. "On the

applicability of machine learning techniques for object

oriented software fault prediction." Software Engineering: An

International Journal 1.1 (2011): 24-37.

[18]. A.TosunMisirli, A. se Ba¸ S.Bener,“A Mapping Study

on Bayesian Networks for Software Quality Prediction”,

Proceedings of the 3rd International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering,

(2014).

[19]. T. Angel Thankachan1, K. Raimond2, “A Survey on

Classification and Rule Extraction Techniques for Data

mining”,IOSR Journal of Computer Engineering ,vol. 8, no.

5,(2013), pp. 75-78.

[20]. T. Minohara and Y. Tohma, “Parameter estimation of

hyper-geometric distribution software reliability growth

model by genetic algorithms”, in Proceedings of the 6th

International Symposium on Software Reliability

Engineering, pp. 324–329, 1995.

