
International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Enhancing Software Quality using Machine

Learning on Open Source Projects
Nitin Kumar

1
, Dakshita Joshi

2

Computer science and Engineering Department,

Bansal Institute of Engineering and Technology, Lucknow

Nitink.srivastava529@gmail.com

Abstract: Software quality and management include

software reliability as a crucial and essential component.

Different conventional techniques have been adopted by

the software industry to discover defects and improve

programme reliability. Numerous businesses provide

numerous beta versions and other releases that are

accessible to the general public. These releases keep track

of the various bugs that users report and are also based on

user feedback. We'll employ machine learning methods

like decision tree models, KNN, linear regression models,

ensemble learning with both boosting and bagging

strategies. The SPSS 14.0 dataset will be used to train all of

the models, and the multidimensional result analysis will

be used to determine which model is best for predicting

software reliability.

Keywords: ANSI, Machine Learning, Software Defect,

SRGM

1. Introduction:

Software that is trustworthy is necessary for business

applications that are vital in nature, yet creating such software

is a major difficulty that our software industry currently faces.

Nowadays, software complexity is rising, making it

challenging to achieve software reliability. The main objective

of software reliability modelling is to determine the likelihood

that a system will fail within a certain time frame or the

anticipated time gap between failures.

According to the ANSI definition, software reliability is the

likelihood that software will operate without errors for a

predetermined amount of time in a predetermined

environment. In recent years, modelling software reliability

has become much more significant. The importance of

software in many modern applications has greatly increased

the quantity of work being done in this field. The prediction of

software reliability has significantly improved in recent years

with the introduction of intelligent neural networks and hybrid

techniques in place of the classic statistical methodologies. It

is difficult to choose the most intelligent or statistical

technique because their performance changes depending on

the data. For estimating and projecting the number of software

defects still present, SRGM has been used.

Software quality, according to ISO 9126, is the "totality of

features and qualities of a software product that have an

impact on its capacity to satisfy stated or implied needs."

While ISO 25000 adopts the stance that software solutions

must be able to satisfy explicit and implicit needs when

utilised in accordance with predetermined guidelines,

"Machine Learning Approach for Quality Assessment and

Prediction in Large Software Organizations" is a related piece

of work (2). (Miroslaw Staron and Rakesh Rana) [1],

Software's importance and complexity, including how to

measure, maintain, and improve software quality, are

expanding daily. Software metrics offer a quantitative way to

assess and subsequently manage various software system

properties. To determine and spend resources where they are

most required, it is crucial to evaluate software quality early in

the development process. When creating software for systems

regarded to be mission, commercial, or safety critical,

dependability-related qualities become even more crucial. In

conjunction with the ISO/IEC 15939 measurement

information model, machine learning techniques can be used

to model the overall quality of a certain software module,

product, or project. a formula or algorithm that combines a

number of basic and/or derived measures with the relevant

decision criteria. It is predicated on knowledge of, or

suppositions regarding, the anticipated relationship between

the component measures and/or their evolution through time.

Models generate projections or assessments pertinent to

specified information requirements. The choice of analysis

methods or models used to develop indicators is influenced by

the scale and measuring approach. Software quality

monitoring, evaluation, and improvement are becoming

increasingly crucial as software becomes a more significant

part of our daily lives and as its complexity rises.

"State of the Art: Machine Learning-based Software Quality

Prediction Models" (Moataz Ahmed and Hamdi A. Al-

Jamimi) [2], Quantification of factors influencing software

quality and machine learning methods used to forecast

software quality Software quality refers to the extent and

satisfaction of the needs that consumers have defined. As this

subject focuses on creating algorithms, ML techniques have

been used to a wide range of problem domains. For predicting

the software fault-proneness modules, use the support vector

machine (SVM). SVM is being used to forecast maintenance

effort. Due to its capacity to incorporate both empirical data

and professional judgments, the Bayesian network (BN) has

been used in numerous research in the SWE field. The use of

neural networks (NN) as a technique for software error

prediction. The connection between internal and external

factors Different research in the literature have attempted to

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

use the capability of fuzzy logic (FL) to measure the software

quality. Quality attributes are surrounded by impression and

uncertainty. The two main sources of knowledge are used by

contemporary software quality prediction modelling

techniques to generate the models. The transparency of the

model is a need for the efficient fusion of knowledge sources.

The study found that none of the existing models address the

problem of model transparency.

2. Related Work:

Bibi S., Tsoumakas G., Stamelos I., Vlahavas I.(2006)[1]

involved AI procedure for figuring out the quantity of

deformities viz. called Regression through Classification

(RvC). A near exploratory investigation of many AI

calculations was done to assess this methodology. Pekka

Forselious gathered the information, whose applications were

kept up with by Finland bank. The structure created gave the

possibility to identify shortcomings that were generally not

distinguishable.

Norman Fenton et.al.(1999) [2], have portrayed a probabilistic

model for programming deformity expectation. The point here

is to plan a model which is a blend of different structures that

might be frequently relaxed, with accessible proof being

developed of programming so the work should be possible in

more regular and productive way than it was recently finished.

Here a basic survey of various programming measurements

and factual models and the cutting edge has been completed.

In the greater part of the models utilized for expectation of

deformity size and intricacy measurements is utilized.

Other live on the testing information, quality improvement

process or potentially a multivariate style is followed. To

confirm this methodology, Graphical likelihood models

(otherwise called Bayesian Belief Networks) has been utilized.

To foster the likelihood model, emotional judgment of experts,

project administrators who are capable has been used to

anticipate the model for blunder. This has been utilized all

through the improvement life pattern of the project.This model

can not exclusively be utilized for surveying continuous

undertakings, yet in addition for investigating the potential

impacts of a scope of programming process improvement

exercises. In the event that expenses can be related with

process enhancements, and advantages surveyed for the

anticipated improvement in programming quality, then the

model can be utilized to help trustworthy decision making for

SPI (Software Process Improvement).

Ahmet Okutan, et.al.(2012)[3], proposed an original strategy

utilizing Bayesian organizations to investigate the connections

among programming measurements and imperfection

inclination. Nine informational collections from Promise

information vault has been utilized and show that RFC, LOC,

and LOCQ are more successful on imperfection inclination.

Additionally proposition for two additional measurements, for

example Gesture for the quantity of designers and LOCQ for

the source code quality has been given. At long last

eventually, peripheral deformity likelihood of the product, its

successful metrices and their connections has been examined.

Mrinal Singh Rawat et. al.(2012)[4], distinguished causative

variables which thusly propose the solutions for further

develop programming quality and efficiency. They showed

how the different deformity expectation models are executed

bringing about decreased size of imperfections. They

introduced the utilization of different AI procedures for the

product shortcoming expectation issue. The unfussiness, ease

in model adjustment, client acknowledgment and forecast

precision of these quality assessment procedures exhibit its

functional and handy attraction. These demonstrating

frameworks can be utilized to accomplish convenient issue

expectations for programming parts as of now a work in

progress, giving significant experiences into their quality. The

product quality affirmation group can then use the

expectations to utilize accessible assets for acquiring savvy

dependability upgrades.

3. Methodology:

Algorithm:

1. Initialise the dataset and assign equal weight to each

of the data point.

2. Provide this as input to the model and identify the

wrongly classified data points.

3. Increase the weight of the wrongly classified data

points..

4. if (got required results)

5. Goto step 5

6. else Goto step 2

7. End

Fig. 1. Adaboost regression model.

Above diagram explains the AdaBoost algorithm in a very

simple way. Let’s try to understand it in a step wise process:

 B1 consist of 10 data points which consist of two

types namely plus(+) and minus(-) and 5 of which are

plus(+) and other 5 are minus(-) and each one has

been assigned equal weight initially. The first model

tries to classify the data points and generates a

vertical separator line but it wrongly classifies 3

plus(+) as minus(-).

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

 B2 consists of the 10 data points from the previous

model in which the 3 wrongly classified plus(+) are

weighted more so that the current model tries more to

classify these pluses(+) correctly. This model

generates a vertical separator line which correctly

classifies the previously wrongly classified pluses(+)

but in this attempt, it wrongly classifies two

minuses(-).

 B3 consists of the 10 data points from the previous

model in which the 3 wrongly classified minus(-) are

weighted more so that the current model tries more to

classify these minuses(-) correctly. This model

generates a horizontal separator line which correctly

classifies the previously wrongly classified minuses(-

).

 B4 combines together B1, B2 and B3 in order to

build a strong prediction model which is much better

than any individual model used.

The block diagram of the proposed work is shown in the

figure 2. The open source data set is acquired and different

regression and classification models are used to predict the

software quality. We will use five different datasets for

validating the model. Before using the data set to train model

the dataset is pre-processed for skewness and the missing

values.

Fig. 2: Adaboost regression model.

6. Result and Discussion:

The proposed model is implemented by using the python

language. Python is a dynamically typed oops based language.

It is majorly used in the field of AI, deep learning, machine

learning, data science and analytics, as well in field of web

devolopment. The python provides various preprocessed api

for the implemention of machine learning models. We have

acquired 5 different open source dataset which we will use to

devolop the software quality assurance model. The data set is

orginally software failure data, which is made availabe by

Musa (1979). The data set is of SPSS 14.0 availabe on http://

www.spss.com. The data set contains the cumulative failure

time and inter failure time. the dataset is stored in comma

seprated files which is read via the pandas (python data

analysis) library. Then the data is visualized by using

matplotlib library. The figure 3 shows the graph of the

different data set used.

Fig. 3. Correlation of the Different Data Set

When the models were trained by using the fifth data set and

the predictions were made. The result shows that the

kneighbors models are having better accuracy compared to

other machine learning models when we used the fifth dataset

for training and testing .the prediction accuracy is as shown in

the figure 4.

Fig. 4. Result of machine learning models on fifth data set

The figure 5 shows the prediction accuracy of the machine

learning models on all the data set. The under fit model is svm

and best fitted models were Kneighbors, and ensemble models

like Random forest, Adaboost, Gradientboost algorithms.

International Conference on Intelligent Technologies & Science - 2021

(ICITS-2021)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2021 IJRDASE

Fig. 5: Result of machine learning models on all data set

7. Conclusion:

Software quality is fundamentally dependent on software

reliability. Software quality has long been a top priority for

businesses. Because software dependability is probabilistic, it

is unpredictable, but we have built prediction models for

software reliability with the aid of machine learning models.

The bagging and boosting ensemble models have excelled all

other models in terms of performance. The methods employed

for the ensemble learning were random forest, adaboost, and

gradientboost. On the open source software reliability dataset,

the KNeighbors algorithm has also produced positive results.

The machine learning models were trained using data from the

SPSS 14.0 open source software. Software reliability is

particularly difficult to anticipate because it varies drastically

from software to software on a regular basis. By utilising the

suggested methodology and conducting a suitable dataset pre-

processing, we may enhance the software dependability

prediction.

References:

[1] Bibi S., Tsoumakas G., Stamelos I., Vlahavas I.(2006),

"Software Defect Prediction Using Regression via

Classification", IEEE International Conference on Computer

Systems and Applications, pp.330 – 336.

[2] Norman Fenton, Paul Krause and Martin Neil, (1999), “A

Probabilistic Model for Software Defect Prediction”, For

submission to IEEE Transactions in Software Engineering.

[3] Ahmet Okutan, Olcay Taner Yıldız,(2012) “Software

defect prediction using Bayesian networks”, Empirical

Software Eng (2014) 19:154–181 © Springer

Science+Business Media, LLC.

[4] Mrinal Singh Rawat, Sanjay Kumar Dubey,(2012)

“Software Defect Prediction Models for Quality Improvement:

A Literature Study”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 5, No 2, pp 288-296.

[5] Supreet Kaur, and Dinesh Kumar, “Software Fault

Prediction in Object Oriented Software Systems Using

Density Based Clustering Approach”, International Journal of

Research in Engineering and Technology (IJRET) Vol. 1 No.

2 March, (2012)ISSN: 2277-4378

[6] Xiao-dong Mu, Rui-hua Chang, Li Zhang, “Software

Defect Prediction Based on Competitive Organization Co-

Evolutionary Algorithm”, Journal of Convergence Information

Technology(JCIT) Volume7, Number5, (2012).

[7] N. Fenton and M. Neil (2008) “Using Bayesian networks

to predict software defects and reliability”, Proc. IMechE Vol.

222 Part O: J. Risk and Reliability, pp 702-7.

[8] Jie Xu, ²Danny Ho and ¹Luiz Fernando Capretz, “An

Empirical Study On The Procedure Drive Software Quality

Estimation Models”, International journal of computer science

& information Technology (IJCSIT) Vol.2, No.4, (2010).

[9] Manu Banga, “Computational Hybrids Towards Software

Defect Predictions”, International Journal of Scientific

Engineering and Technology Volume 2 Issue 5, pp : 311-316,

(2013)

[10] Mohamad Mahdi Askari and Vahid Khatibi Bardsiri

(2014), “Software Defect Prediction using a High

Performance Neural Network”, International Journal of

Software Engineering and Its Applications Vol. 8, No. 12

(2014), pp. 177-188.

[11] Kamaljit Kaur (2012), “Analysis of resilient back-

propogation for improving software process control”

International Journal of Information Technology and

Knowledge Management July-December 2012, Volume 5, No.

2, pp. 377-379.

[12] Mrs.Agasta Adline, Ramachandran. M(2014), “Predicting

the Software Fault Using the Method of Genetic Algorithm”,

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, Vol. 3, Special

Issue 2,, pp 390-398.

[13] R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang, and Z. Sun,

``Software defect prediction based on ensemble learning,'' in

Proc. 2nd Int. Conf. Data Sci. Inf. Technol. (DSIT), Jul. 2019,

pp. 1 6, doi: 10.1145/3352411.3352412.

[14] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc,

``Multiple-classi ers in software quality engineering:

Combining predictors to improve software fault prediction

ability,'' Eng. Sci. Technol., Int. J., vol. 23, no. 4, pp. 938 950,

Aug. 2020, doi: 10.1016/j.jestch.2019.10.005.

[15] H. Aljamaan and A. Alazba, ``Software defect prediction

using tree-based ensembles,'' in Proc. 16th ACM Int. Conf.

Predictive Models Data Anal. Softw. Eng. (PROMISE). New

York, NY, USA: Association for Computing Machinery, Nov.

2020, pp. 1 10, doi: 10.1145/3416508.3417114.

[16] L. Goel, M. Sharma, S. K. Khatri, and D. Damodaran,

``Defect prediction of cross projects using PCA and ensemble

learning approach,'' in Micro-Electronics and

Telecommunication Engineering Lecture Notes in Networks

and Systems, vol. 106, D. Sharma, V. Balas, L. Son, R.

Sharma, and K. Cengiz, Eds. Singapore: Springer, 2020, doi:

10.1007/978-981-15-2329-8_31.

