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Abstract: The detection of small objects is a difficult 

computer vision challenge. It has been used extensively in 

the military, transportation, business, etc. We thoroughly 

examine the existing small object detection methods based 

on deep learning from five perspectives, including multi-

scale feature learning, data augmentation, training 

strategy, context-based detection, and GAN-based 

detection, in order to facilitate in-depth understanding of 

small object detection. The performance of certain 

common small object detection techniques is then carefully 

examined using well-known datasets as MS-COCO and 

PASCAL-VOC. Last but not least, five perspectives are 

used to suggest potential future directions for small object 

detection research: emerging small object detection 

datasets and benchmarks, multi-task joint learning and 

optimisation, information transmission, weakly supervised 

small object detection methods, and framework for small 

object detection task. 
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1. Introduction: 

Small object detection is a fundamental computer technology 

that deals with identifying instances of small objects of a 

particular class in digital images and videos. It is related to 

image understanding and computer vision. Many other 

computer vision tasks, such as object tracking [1, instance 

segmentation [2,3], image captioning [4, action recognition [5, 

scene understanding [6, etc.], are based on small object 

detection, which is an essential and challenging problem. 

Small object detection has advanced to a research highlight as 

a result of the compelling success of deep learning techniques 

in recent years, which has brought in fresh talent. Small object 

detection has been extensively utilized in academic settings as 

well as applications in the real world, including robot vision, 

autonomous driving, intelligent transportation, drone scene 

analysis, and military reconnaissance and surveillance. 

 

The most common definitions of small objects are two. In the 

real world, smaller objects are referred to as one. In the MS-

COCO [7] metric evaluation, a different definition of small 

objects is mentioned. The term "small objects" refers to 

objects with areas smaller than or equal to 32 x 32 pixels. The 

community generally accepts this size threshold for datasets 

pertaining to common objects. Figure depicts a few examples 

of small objects, including "baseball," "tennis," and the traffic 

sign "pg." 1. Even though many object detectors are good at 

detecting medium and large objects, they are terrible at 

detecting small ones. This is because small object detection 

faces three challenges. First, small objects lack the necessary 

appearance information to differentiate them from 

backgrounds or other similar categories. The locations of 

small objects then have significantly more options. That is to 

say, accurate localization necessitates greater precision. Due to 

the fact that the majority of previous endeavors were 

optimized for the large object detection problem, small object 

detection expertise and experience are severely limited. 

 

A comprehensive and in-depth look at small object detection 

in the age of deep learning is presented in this paper. Our 

study means to cover completely five regards of little article 

discovery calculations, including multi-scale highlight 

learning, information expansion, preparing procedure, setting 

based recognition and GAN-based location. We investigate 

datasets and evaluation metrics for small object detection in 

addition to taxonomically examining the existing methods for 

detecting small objects. In the meantime, we present a number 

of promising directions for future research and conduct a 

comprehensive analysis of the effectiveness of small object 

detection methods. 

 

The history of small object detection is relatively brief in 

comparison to that of other tasks in computer vision. Utilizing 

hand-engineered features and shallow classifiers in aerial 

images, vehicle detection has been the primary focus of 

previous research on small object detection [8, 9]. Color- and 

shape-based features were also used to solve traffic sign 

detection issues prior to the advent of deep learning [10]. 

Some methods for small object detection that are based on 

deep learning have emerged as a result of the rapid 

development of convolutional neural networks (CNNs) in 

deep learning. However, there are relatively few surveys and 

studies that concentrate solely on the detection of small 

objects. The majority of the most cutting-edge techniques are 

based on existing object detection algorithms that have been 

modified to better detect small objects. As far as we are aware, 

Chen et al. 11] are maybe quick to present a little item location 

(Grass) dataset, an assessment metric, and give a benchmark 

score to investigate little article recognition. Krishna and 

Jawahar [12] later expand on their concepts and propose an 

efficient upsampling-based method with superior results for 
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small object detection. Zhang et al.'s approach is distinct from 

the R-CNN (regions with CNN features) used in [11,12]. 13] 

For remote sensing image small object detection, utilize 

deconvolution R-CNN [14]. Two major approaches to object 

detection are single shot detector (SSD) [16] and faster R-

CNN [15]. Some small object detection techniques—[17, 18], 

[19], [20], and [21]]—are suggested based on Faster R-CNN 

or SSD. Small object detection also makes use of generative 

adversarial networks (GAN) [29,30], multi-scale techniques 

[22,23], data augmentation techniques [24], training strategies 

[25,26], contextual information [27,28], and multi-scale 

techniques [22,23]. Table 1 provides a brief chronology. 

 

We select significant or influential papers from prestigious 

conferences and journals with great care. The major advances 

in small object detection over the past three to five years are 

the primary focus of this review. However, some additional 

related works are also included for completeness and easier 

reading. It is significant that we limit this audit to picture level 

little article discovery techniques. We won't talk about any 

other work on small object detection, like video small object 

detection and 3D small object detection. 

 

2. Related Work: 

Deep learning has got a lot of attention since AlexNet [45] 

won first place in the challenge of ImageNet [14] in 2012. 

Great improvements have been achieved both in the accuracy 

[38] and speed [37] of image classification. In this part, we 

briefly introduce some of the advanced classification 

architectures that have been widely applied in object detection 

as backbone, which are utilized to extract features. The 

development of backbone can be divided into several stages 

which are represented by some classic network design 

principles (see Fig. 3 ). The first is repeat which stacks 

structure with the same topology and makes the entire network 

becomes a modular structure. This technique starts from 

AlexNet and VGG [79] (Fig. 3a) and is adopted by almost all 

the later works. The second is multi-path which first appears 

in Inception [82] module (Fig. 3b). The input from the 

previous layer is divided into different paths to transform by 

filters with different kernel sizes, and finally, the output is 

concatenated by a 1×1 convolutional layer. The last is the 

skip-connection which starts from Highway Network [81] and 

becomes a standard principle from ResNet [30]. It constructs 

the connection between high-level and low-level feature 

information which changes the original single linear structure. 

 

AlexNet: AlexNet [45] consists of five convolutional layers 

and three fully connected layers. It is a milestone study of 

deep learning and computer vision for introducing some 

advanced techniques like training the network with graphics 

processing unit (GPU) for speeding up the operation of 

convolution parallelly and using the dropout to prevent from 

overfitting. 

 

VGGNet: VGGNet [79] won second place in the 

classification task and the first place in location task in the 

competition of ILSVRC 2014. The small receptive field is 

utilized in the whole network for fewer parameters. It has two 

versions: VGG-16 and VGG-19. VGG-16 has been widely 

used because of its simple architecture, which has 13 

convolutional layers, five pooling layers, and three fully 

connected layers. 

 

GoogLeNet: To solve the overfitting and computing problem 

arising with the increasing size of the network, Inception 

module was introduced in GoogLeNet [82]. Using different 

kernel sizes of filters in the same layer helps preserve the 

spatial information and reduce the parameters. It has 22 layers, 

which is almost three times deeper than AlexNet, but it has 12 

times fewer parameters than AlexNet. 

 

ResNet/ResNeXt: ResNet [30] is one of the most successful 

CNNs and has been exploited in many applications including 

the very famous AlphaGo [78]. The idea of the ResNet is 

simple yet effective, which each layer should not learn 

unreferenced functions but learn residual functions with 

references to the layer’s inputs. This kind of learning makes it 

easier to train much deeper networks efficiently. ResNet has 

different architectures: ResNet- 50, ResNet-101 and ResNet-

152. ResNeXt [93] is the upgraded version of ResNet. It is 

constructed by repeating a building block that aggregates a set 

of transformations with the same topology. It demonstrates 

that it’s more effective to increase the size of the set of 

transformations (cardinality) than to increase the depth and 

width. Moreover, a 101-layer ResNeXt can achieve better 

accuracy than ResNet-200 but with only 50% complexity. 

 

DenseNet: Inspired by the shortcut connection of ResNet, 

DenseNet [38] connects each layer in the network with every 

other layer in a feed-forward fashion with L(L+2)/2 direct 

connections. In addition to the original features (alleviating the 

vanishing-gradient problem and reducing the number of 

parameters) of the shortcut connection, this design has new 

features that strengthen feature propagation and encourage 

feature reuse. Besides, with the help of the bottleneck layer, 

translation layer, and small growth rate, the network becomes 

narrow which can prevent from overfitting. The models above 

mainly focus on the accuracy improvement of the 

classification by increasing the depth and width of the 

network. On the other hand, some architectures are putting 

their attention on the model size while maintaining 

considerable accuracy so that they can be utilized on the 

devices with memory and computation speed constraints. 

 

MobileNets: MobileNet [35] is a lightweight deep neural 

network proposed by Google for embedded devices such as 

mobile phones. The core of network designs, separable 

convolution, can effectively reduce the number of parameters 

and computation at the expense of lesser performance. 

Separable convolution replaces traditional convolution 
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operations with two-step convolution operations: depth-wise 

convolution and point-wise convolution. Subsequent 

MobileNet-v2 [72] mainly adds residual structure, and adds a 

layer of pointwise convolution before depth-wise convolution, 

which optimizes the bandwidth usage and further improves the 

performance on embedded devices. 

 

Xception: Xception [8] is an improvement to Inception v3 

[83], mainly using Depthwise Separable Convolution to 

replace the original Inception v3 convolution operation, in the 

premise of little increase in network complexity to improve 

the effectiveness of the model. Xception separates the tasks 

related to learning space from the tasks related to learning 

channels by adding groups to the convolution layer, which 

dramatically reduces the theoretical computation complexity 

and the size of the model. SqueezeNet: Based on three 

architecture design strategies: (1) replace 3 × 3 filters with 1 × 

1 filters; (2) decrease the number of input channels to 3 × 3 

filters; (3) downsample late in the network so that convolution 

layers have large activation maps, SqueezeNet [40] is a small 

CNN architecture. Fire module which consists of squeeze 

convolution layer and expand layer is used to reduce the 

parameter number. With further compression, the model size 

of SqueezeNet can be compressed to less than 0.5 MB which 

is 510× smaller than AlexNet [45] while it can achieve 

AlexNet-level accuracy with 50× fewer parameters. 

 

ShuffleNet: ShuffleNet [100] utilizes two new mechanisms, 

point-wise group convolution, and channel shuffle, to reduce 

computation cost while maintaining accuracy. Experiments 

show that it is an extremely computation-efficient CNN 

architecture with comparable accuracy. Channel split is 

introduced in the upgrade version, ShuffleNet v2 [61], to 

speed up the network. Some practical guidelines for efficient 

network design are proposed in this work, and ShuffleNet v2 

achieves a trade-off between speed and accuracy. In addition 

to these models mentioned above, there are also some 

noticeable architectures [37, 97]. ZFNet [97] presents a 

method of deconvolution for visualization of convolution 

network, which can analyze the effect of convolution network 

and guide the improvement of  the network. Based on AlexNet 

network, ZFNet obtains a better result. SE block in SENet [37] 

is designed by explicitly modeling the interdependence 

between channels and adaptively recalibrating the channel 

response. The core of the SENet is squeezing and excitation 

operation. 

 

OverFeat: Overfeat [73], one of the first advances in using 

deep learning for object detection, integrates three tasks of 

image classification, location, and detection into a framework 

to boost the accuracy and won the first place in the 

ILSVRC2013 localization competition. OverFeat is based on 

the multi-scale sliding-window algorithm, which is an 

intuitive search method of object detection. 

 

R-CNNs: R-CNN [24], one of the most famous region-base 

convolutional neural networks, is the first to use deep CNN to 

extract feature for object detection. Firstly, it generates about 

2k object candidates named region proposals through 

Selective Search [85]. Then these proposals are resized to the 

fixed size to fit the input size of the CNN like AlexNet. A 

fixed length of feature vectors is generated by the CNN and 

finally classified using class-specific linear support vector 

machines (SVMs). This simple yet effective pipeline has 

reached state-of-the-art performance on the benchmark 

datasets with momentous performance boost over all previous 

models, which are mainly based on DPM [23] while the 

computation for every region proposal is very time-

consuming. The whole detection pipeline of R-CNN. To solve 

the computation and the limited image input size problem, 

SPPnet [29] introduces spatial pyramid pooling to relax the 

constraint of the fixed input size due to the fully connected 

layers. More importantly, SPPnet extracts the feature maps 

from the entire image independent of the region proposal 

stage. Then it matches the proposals through spatial pyramid 

pooling (SPP) and generates a fixed-length vector regardless 

of the input size. Finally, the fixed-length representation is 

input into the last two fully connected layers and then 

classified by category-specific linear SVMs. SPPnet speeds up 

the R-CNN method 24-102× faster with better or comparable 

accuracy. Fast R-CNN [25] inherits the spatial pyramid 

pooling from SPPnet but modifies it as Region of Interest 

(ROI) Pooling which can be seen as a single-level SPP. It uses 

the bounding-box regressor instead of linear SVMs and 

utilizes a multi-task loss which makes the network can be 

trained in a single stage and no extra storage is required for 

feature caching during the training. This method can train a 

very deep detection network with a backbone VGG16 [79], 

testing 9× faster than R-CNN [24] and 3× faster than SPPnet 

[29]. At test time, the detection network processes one image 

in 0.3s (excluding object proposal time). Faster R-CNN [71] 

replaces the Selective Search [85] in the region proposal stage 

with the region proposal network (RPN) (the right corner of 

Fig. 4) which is built by several convolutional layers, which 

makes the network completely trainable end-to-end. With the 

RPN, Faster R-CNN can process an image in 0.2 seconds 

(including region proposal), which is 250× faster than R-CNN 

and 10× than Fast R-CNN, almost toward real-time. It is 

noticeable that the backbone of R-CNN is AlexNet [45], and 

SPPnet is based on ZF-5 [97] while Fast R-CNN and Faster R-

CNN adopt VGG-16 [79]. 

 

YOLOs: Focusing on real-time object detection, YOLO [68] 

borrows ideas from the design of the architecture of 

GoogLeNet [82]. The input image is divided into S × S grid 

and the grid where the center of the object lies in charge of the 

prediction of the object. Each grid cell outputs B bounding 

boxes and confidence scores for those boxes, as well as C 

class probabilities. The unified framework runs at 45 frames 

per second with the performance outperforming DPM [23] and 

R-CNN [24]. The architecture of YOLO can be seen in the 
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above part of Fig. 5. To improve the precision and recall of 

object localization, YOLOv2 [69] adopts some advanced 

methods to make the detection better, stronger and faster. 

Briefly, the idea of anchor box is introduced from Faster R-

CNN [71] and the network architecture is altered to fit the 

modification where the fully connected layer of the output 

layer is replaced by a convolutional layer. UsingWordTree and 

joint training method, the authors train YOLOv2 

simultaneously on the MS COCO [52] detection dataset and 

the ImageNet classification dataset. YOLOv2 gets 78.6 mAP 

at the speed of 40 frames per second, outperforming state-of-

the-art methods like Faster R-CNN with ResNet and SSD 

while still running significantly faster. Based on Darknet-53 

[67], which is as accurate as ResNet- 101 or ResNet-152 [30] 

but much faster, YOLOv3 [70] makes an incremental 

improvement not only on the accuracy perspective but also 

speed. Multi-scale prediction employed to get more 

meaningful semantic information from the upsampled features 

and finer-grained information from the earlier feature map. At 

the image size of 320 × 320, YOLOv3 runs as accurate as SSD 

[56] but three times faster. It achieves similar performance but 

3.8× faster compared to RetinaNet [54]. 

 

3. Conclusion: 

The detection of small objects is one of the most difficult 

computer vision problems. This work compares and analyses 

the existing classic small object identification algorithms on 

certain well-known object detection datasets, such as 

PASCAL-VOC, MS-COCO, KITTI, and TT100K, and 

thoroughly evaluates tiny object recognition approaches based 

on deep learning from five dimensions. 
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