
International Conference on Intelligent Technologies & Science - 2022

(ICITS-2022)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2022 IJRDASE

Deep Eigenspace Learning for Robust Malware

Detection in Internet of Things (IoT) Devices
Anshika Singh

1
, Deepti Ranjan Tiwari

2

Computer Science and Engineering,

Lucknow Institute of Technology & Management, Lucknow, India

Anshika.anshi2593@gmail.com

Abstract: The Internet of Things (IoT) typically consists

of a wide variety of Internet-connected devices and

nodes in military settings, such as wearable combat

uniforms and medical devices. Cybercriminals,

particularly state-sponsored or nation-state actors, use

these IoT devices and nodes as a valuable target.

Malware is a common method of attack. Using the

device's Operational Code (OpCode) sequence, we

present a deep learning-based strategy for detecting

Internet of Battlefield Things (IoBT) malware in this

paper. To distinguish between malicious and benign

applications, we use a deep Eigenspace learning

technique to transform OpCodes into a vector space. In

addition, we demonstrate the viability of our suggested

method against junk code insertion attacks and malware

detection. Last but not least, we make our malware

sample accessible on Github, with the hope that it will

aid future research efforts (for example, by making it

easier to evaluate new methods for detecting malware).

Keywords: IOT, OpCode, Eigenspace learning, Malware

detection.

1. Introduction:

An OpCode inspection-abusing malware technique is the

junk code injection attack. Junk code insertion, as the name

suggests, may include the inclusion of benign OpCode

sequences that do not execute malware or instructions (like

NOP) that have no effect on malware activities. An affinity-

based criterion is used to mitigate the junk OpCode

injection anti-forensics technique, which typically aims to

obscure malicious OpCode sequences and decrease the

malware's "proportion" of malicious OpCodes.

The IoBT CRA, a new collaborative venture that aims to

develop the foundations of IoBT in the context of future

Army operations, will be established by ARL"1. In such an

IoT environment, there are fundamental concerns regarding

privacy and security [1]. Cybercriminals are more likely to

target IoBT architecture and devices due to the sensitive

nature of IoBT deployment (e.g., military and warfare),

despite the fact that IoT and IoBT share many of the

fundamental cyber security risks (e.g., malware infection

[14]).

Additionally, actors who target IoBT infrastructure and

devices are more likely to be backed by the state, have

better resources, and have received professional training.

Two areas of active research are malware prevention and

intrusion detection [11]. However, existing or conventional

intrusion and malware detection and prevention solutions

are unlikely to be suitable for real-world deployment due to

the resource constrained nature of the majority of IoT and

IoBT devices and customized operating systems.

IoT malware, such as Stuxnet, which is said to have been

designed to target nuclear plants, is likely to be "harmless"

to consumer devices like Android and iOS devices and

personal computers because it exploits lowlevel

vulnerabilities in compromised IoT devices. As a result, IoT

and IoBT-specific malware detection must be addressed

[20].

Due to their potential to improve detection accuracy and

robustness, machine learning and deep learning techniques

have recently sparked interest in malware detection (such as

distinguishing between malicious and benign applications)

[15]. In most cases, the following criteria are used to

determine whether or not machine learning and deep

learning methods are useful for detecting malware: Positive

100% (TP): indicates that a malware application has been

correctly identified. Authentic Negative (TN): indicates that

a benign application is correctly identified as non-malicious.

Positive False (FP): indicates that a benign application is

mistakenly identified as a malicious one. Negative False

(FN): indicates that an application that is not malicious is

not identified as malware. The following metrics will then

be used to measure a system's effectiveness based on the

aforementioned criteria:

Cross-validation is a fundamental method in machine

learning that is used to evaluate the extent to which the

results of an experiment can be generalized into an

independent dataset. Accuracy is calculated by dividing the

number of samples that a classifier correctly detects by the

total number of malware and goodware.

Even though there are a lot of cross validation methods,

such as Leave-POut, K-fold, and Repeated Random Sub-

sampling, K-fold validation methods, like 10-fold, are

usually used when a dataset is small. In the absence of an

independent validation set, the fitness of a model to a

hypothetical validation set is frequently validated using K-

Fold validation methods [2, 6]. Utilizing deep learning

techniques for malware detection is becoming increasingly

popular as a result of the rapid pace of malware

development and the significant increase in malware

samples.

International Conference on Intelligent Technologies & Science - 2022

(ICITS-2022)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2022 IJRDASE

2. Related Work:

Methods for detecting malware can be either static or

dynamic [5]. In dynamic malware detection methods, the

program is run in a controlled environment (such as a virtual

machine or sandbox) to collect its behavioral attributes, such

as the required resources, execution path, and requested

privilege, so that it can be classified as malware or benign

[6, 7], 8]. In order to identify potentially malicious software,

static methods such as signature-based detection, byte-

sequence n-gram analysis, opcode sequence identification,

and control flow graph traversal statically inspect a

program's code. Deepsign, which uses signature generation

to automatically detect malware, was proposed by David et

al. [9]. In a sandbox, the latter generates a dataset from

behavior logs of API calls, registry entries, web searches,

port accesses, and other activities before converting the logs

into a binary vector. For classification, they reportedly used

a deep belief network and achieved 98.6% accuracy.

Pascanu et al. in another study [1] proposed a natural

language modeling-based method for modeling malware

execution. In order to anticipate the subsequent API calls,

they used a recurrent neural network to extract relevant

features. The next API call prediction classification module

used a combination of logistic regression and multi-layer

perceptions, with the past events' history as a feature. It was

stated that a true positive rate of 98.3 percent and a false

positive rate of 0.1 percent were achieved. Demme and

others 4] looked into whether performance counters could

be used as a learning feature and K-Nearest Neighbor,

Decision Tree, and Random Forest could be used as

classifiers to build a malware detector into the hardware of

IoT nodes. The various malware families' reported accuracy

rates range from 25% to 100%. Alam and co. 2] identified

malicious code by employing Random Forest on a dataset of

smartphone devices connected to the Internet. They used

various tree sizes to evaluate their approach and ran APKs

in an Android emulator, recorded various features for

classification, such as memory information, permission, and

network. According to their findings, the best classifier has

40 trees and a mean square root of 0.0171. Azmoodeh et al.

[] developed a method for detecting crypto-ransomware on

Android devices used as management nodes in IoT

networks. 3] logged the amount of power used by running

processes and discovered distinct local patterns of energy

consumption for legitimate applications and ransomware.

They classified each sub-sample of the power usage pattern

and gathered the labels of those sub-samples to create the

final label. According to reports, the proposed method was

accurate by 92.75 percent. Haddad Pajouh et al. were

motivated by the need to protect the IoT backbone from

malware attacks. [44] to suggest a module for malicious

activity detection that uses two-tier classification and two-

layer dimension reduction. In particular, the dataset was

reduced by means of Principle Component Analysis and

Linear Discrimination Analysis, and samples were classified

by means of Naive Bayes and K-Nearest Neighbor. Their

false alarm and detection rates were 84.86% and 4.86%,

respectively. Although OpCodes are regarded as an

effective malware detection feature, it does not appear that

OpCodes have been utilized for IoT and IoBT malware

detection. Another unexplored area is the use of deep

learning to effectively detect malware in IoT networks. By

investigating the potential of OpCodes as features for

malware detection with deep Eigenspace learning, our goal

in this paper is to fill this void.

3. Methodology:

Python is a high-level, interactive, object-oriented, general-

purpose interpreted programming language. Python is an

interpreted language with a design philosophy that places an

emphasis on code readability (for example, using

whitespace indentation rather than curly brackets or

keywords to delimit code blocks) and a syntax that lets

programmers express concepts in fewer lines of code than

they might in languages like C++ or Java. It offers

structures that make it possible to program clearly at both

small and large scales. There are Python interpreters for a

lot of different operating systems. Like nearly all of its

variant implementations, the reference implementation of

Python, CPython, is open source software with a

community-based development model. The non-profit

Python Software Foundation oversees CPython. Python has

an automatic memory management system and a dynamic

type system. It has a large and extensive standard library

and supports a variety of programming paradigms, including

object-oriented, imperative, functional, and procedural.

Proposed Method:

This is, to the best of our knowledge, the first OpCode-

based deep learning approach for the detection of IoT and

IoBT malware. The viability of our suggested strategy

against existing OpCode-based malware detection systems

is then demonstrated. In addition, we demonstrate how well

our suggested strategy defends against junk-code insertion

attacks. To be more specific, in order to ward off junk-code

insertion attacks, the strategy we propose makes use of a

class-wise feature selection method to overrule OpCodes

that are not as important. In addition, we make use of every

Eigenspace feature to improve sustainability and detection

rates. Last but not least, as a secondary contribution, we

offer a normalized dataset of IoT malware and benign

applications2, which other researchers can use to compare

and contrast possible future methods of malware detection.

On the other hand, the proposed method falls under the

OpCode-based detection category, so it may be applicable to

platforms other than IoT. The IoT and IoBT applications

will probably be made up of a long series of OpCodes,

which are instructions for the device processing unit to carry

out. We extracted the OpCodes using the disassembler

Objdump (GNU binutils version 2.27.90) for disassembling

the samples. A common method for classifying malware

International Conference on Intelligent Technologies & Science - 2022

(ICITS-2022)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2022 IJRDASE

based on its disassembled codes is to create an n-gram Op-

Code sequence. For a length of N, the number of basic

features is CN, where C is the size of the instruction set.

Clearly, feature explosion will occur with a significant

increase in N. Because ineffective features will affect the

machine learning approach's performance, reducing the size

of the feature also improves detection robustness and

efficiency.

Malware Deduction Users look for any link, but not all

network traffic data produced by malicious apps matches

malicious traffic. Many forms of malware are repackaged

versions of safe apps; Consequently, malware may also

contain a benign app's fundamental features. As a

consequence of this, the kind of network traffic that they

produce can be described as a mix of benign and malicious

traffic. The natural language processing (NLP) N-gram

method is used to examine the traffic flow header..

Algorithm

N-Gram sequence:

In the fields of computational linguistics and probability, an

n-gram is a contiguous sequence of n items from a given

sample of text or speech. The items can be phonemes,

syllables, letters, words or base pairs according to the

application. The n-grams typically are collected from a text

or speech corpus.

Algorithm : Junk Code Insertion Procedure

Input: Trained Classifier D, Test Samples S, Junk Code

Percentage k

Output: Predicted Class for Test Samples P

1: P = fg

2: for each sample in S do

3: W= Compute the CFG of sample based on Section 4.1

4: R = fselect k% of W’s index randomly(Allow duplicate

indices)g

5: for each index in R do

6: Windex = Windex + 1

7: end for

8: Normalize W

9: e1; e2= 1st and 2nd eigenvectors of W

10: l1; l2= 1st and 2nd eigenvalues of W

11: P = P

S

D(e1; e2; l1; l2)

12: end for

13: return P

Support Vector Machine

―Support Vector Machine‖ (SVM) is a supervised machine

learning algorithm which can be used for both classification

and regression challenges. However, it is mostly used in

classification problems. In this algorithm, we plot each data

item as a point in n-dimensional space (where n is number

of features you have) with the value of each feature being

the value of a particular coordinate. Then, we perform

classification by finding the hyper-plane that differentiate

the two classes very well (look at the below snapshot). The

SVM algorithm is implemented in practice using a kernel.

The learning of the hyper plane in linear SVM is done by

transforming the problem using some linear algebra, which

is out of the scope of this introduction to SVM. A powerful

insight is that the linear SVM can be rephrased using the

inner product of any two given observations, rather than the

observations themselves. The inner product between two

vectors is the sum of the multiplication of each pair of input

values. For example, the inner product of the vectors [2, 3]

and [5, 6] is 2*5 + 3*6 or 28. The equation for making a

prediction for a new input using the dot product between the

input (x) and each support vector (xi) is calculated as

follows:

 f(x) = B0 + sum(ai * (x,xi))

This is an equation that involves calculating the inner

products of a new input vector (x) with all support vectors in

training data. The coefficients B0 and ai (for each input)

must be estimated from the training data by the learning

algorithm.

Fig 1: Architecture Diagram.

4. Result and Discussion:

Two congruent algorithms—1 and 2—described in Section

1 are applied to our generated dataset using Adaboost as the

classification algorithm to demonstrate the robustness of our

proposed strategy and compare it to other proposals. The

Python Django Framework was used in all tests on a

Microsoft Windows 10 Pro computer with an Intel Core i5

2.67GHz and 4GB of RAM. During the validation, a 10-fold

International Conference on Intelligent Technologies & Science - 2022

(ICITS-2022)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2022 IJRDASE

cross validation was used. It is abundantly clear that our

proposed method performs better than those of Hashemi et

al. and Santos and others

In the not-too-distant future, IoT, particularly IoBT, will

become increasingly significant. There will never be a

malware detection solution that works perfectly, but we can

be sure that cyber attackers and defenders are always in a

race. As a result, it is critical that we continue to exert

pressure on threat actors. An IoT and IoBT malware

detection strategy based on class-wise selection of Op-Code

sequence as a feature for the classification task was

presented in this paper. For each sample, a graph of selected

features was created, and a deep Eigenspace learning

method was used to classify malware. With an accuracy rate

of 98.37 percent and a precision rate of 98.59 percent, our

evaluations demonstrated the robustness of our malware

detection strategy, as well as its ability to prevent junk code

insertion attacks.

The method used by Santos et al. is a fundamental OpCode-

based malware detection algorithm and Hashemi et al.'s

strategy. is the closest in that it uses eigenspace as its

foundation. Precision is an overall measures for assessing

execution of a calculation for both malware and harmless

class recognizable proof. The proposed method has a high

accuracy of 99.68 percent, whereas Hashemi et al.'s and

Santos and others respectively achieve an accuracy of

98.59% and 95.91%. A crucial criterion is the recall or

detection rate, and the proposed method achieves 98.37

percent, compared to 81.55% and 77.70% for the other two

methods.

Additionally, our proposed strategy performs better than

those of Hashemi et al. and Santos and others, in terms of F-

Measure and precision rate. During the classification phase,

it appears that beneficial features of minor classes are more

effective when class-wise feature selection is used.

Additionally, when OpCode's distance is calculated using

Formulation (6), more OpCode sequence patterns can be

represented in the sample's graph. Additionally, it appears

that a superior classifier is produced by utilizing deep neural

networks for classification.

International Conference on Intelligent Technologies & Science - 2022

(ICITS-2022)

Organized by: International Journal of Research and Development in Applied Science and Engineering, India

All Rights Reserved © 2022 IJRDASE

5. Conclusion:

In the not-too-distant future, IoT, particularly IoBT, will

become increasingly significant. There will never be a

malware detection solution that works perfectly, but we can

be sure that cyber attackers and defenders are always in a

race. As a result, it is critical that we continue to exert

pressure on threat actors. An IoT and IoBT malware

detection strategy based on class-wise selection of Op-Code

sequence as a feature for the classification task was

presented in this paper. For each sample, a graph of selected

features was created, and a deep Eigenspace learning

method was used to classify malware. With an accuracy rate

of 98.37 percent and a precision rate of 98.59 percent, our

evaluations demonstrated the robustness of our malware

detection strategy, as well as its ability to mitigate junk code

insertion attacks.

References:

[1] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S.

Nepal, ―Internet of things (iot): Smart and secure service

delivery,‖ ACM Transactions on Internet Technology, vol.

16, no. 4, p. Article No. 22, 2016.

[2] X. Li, J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, and K.-

K. R. Choo, ―A three-factor anonymous authentication

scheme for wireless sensor networks in internet of things

environments,‖ Journal of Network and Computer

Applications, 2017.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,

―Internet of things (iot): A vision, architectural elements,

and future directions,‖ Future generation computer systems,

vol. 29, no. 7, pp. 1645– 1660, 2013.

[4] F. Leu, C. Ko, I. You, K.-K. R. Choo, and C.-L. Ho, ―A

smartphonebased wearable sensors for monitoring real-time

physiological data,‖ Computers & Electrical Engineering,

2017.

[5] M. Roopaei, P. Rad, and K.-K. R. Choo, ―Cloud of

things in smart agriculture: Intelligent irrigation monitoring

by thermal imaging,‖ IEEE Cloud Computing, vol. 4, no. 1,

pp. 10–15, 2017.

[6] X. Li, J. Niu, S. Kumari, F. Wu, and K.-K. R. Choo, ―A

robust biometrics based three-factor authentication scheme

for global mobility networks in smart city,‖ Future

Generation Computer Systems, 2017.

[7] L. Atzori, A. Iera, and G. Morabito, ―The internet of

things: A survey,‖ Computer networks, vol. 54, no. 15, pp.

2787–2805, 2010. [8] D. Miorandi, S. Sicari, F. De

Pellegrini, and I. Chlamtac, ―Internet of things: Vision,

applications and research challenges,‖ Ad Hoc Networks,

vol. 10, no. 7, pp. 1497–1516, 2012.

[9] A. Kott, A. Swami, and B. J. West, ―The internet of

battle things,‖ Computer, vol. 49, no. 12, pp. 70–75, 2016.

[10] C. Tankard, ―The security issues of the internet of

things,‖ Computer Fraud & Security, vol. 2015, no. 9, pp.

11 – 14, 2015.

[11] C. J. DOrazio, K. K. R. Choo, and L. T. Yang, ―Data

exfiltration from internet of things devices: ios devices as

case studies,‖ IEEE Internet of Things Journal, vol. 4, no. 2,

pp. 524–535, April 2017.

[12] S. Watson and A. Dehghantanha, ―Digital forensics: the

missing piece of the internet of things promise,‖ Computer

Fraud & Security, vol. 2016, no. 6, pp. 5–8, 2016.

[13] M. Conti, A. Dehghantanha, K. Franke, and S. Watson,

―Internet of things security and forensics: Challenges and

opportunities,‖ Future Generation Computer Systems, vol.

78, no. Part 2, pp. 544 – 546, 2018.

[14] E. Bertino and N. Islam, ―Botnets and internet of things

security,‖ Computer, vol. 50, no. 2, pp. 76–79, Feb 2017.

[15] J. Gardiner and S. Nagaraja, ―On the security of

machine learning in malware c&c detection: A survey,‖

ACM Computing Surveys, vol. 49, no. 3, p. Article No. 59,

2016.

