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Abstract: The Internet of Things (IoT) typically consists 

of a wide variety of Internet-connected devices and 

nodes in military settings, such as wearable combat 

uniforms and medical devices. Cybercriminals, 

particularly state-sponsored or nation-state actors, use 

these IoT devices and nodes as a valuable target. 

Malware is a common method of attack. Using the 

device's Operational Code (OpCode) sequence, we 

present a deep learning-based strategy for detecting 

Internet of Battlefield Things (IoBT) malware in this 

paper. To distinguish between malicious and benign 

applications, we use a deep Eigenspace learning 

technique to transform OpCodes into a vector space. In 

addition, we demonstrate the viability of our suggested 

method against junk code insertion attacks and malware 

detection. Last but not least, we make our malware 

sample accessible on Github, with the hope that it will 

aid future research efforts (for example, by making it 

easier to evaluate new methods for detecting malware). 

 

Keywords: IOT, OpCode, Eigenspace learning, Malware 
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1. Introduction: 

An OpCode inspection-abusing malware technique is the 

junk code injection attack. Junk code insertion, as the name 

suggests, may include the inclusion of benign OpCode 

sequences that do not execute malware or instructions (like 

NOP) that have no effect on malware activities. An affinity-

based criterion is used to mitigate the junk OpCode 

injection anti-forensics technique, which typically aims to 

obscure malicious OpCode sequences and decrease the 

malware's "proportion" of malicious OpCodes. 

The IoBT CRA, a new collaborative venture that aims to 

develop the foundations of IoBT in the context of future 

Army operations, will be established by ARL"1. In such an 

IoT environment, there are fundamental concerns regarding 

privacy and security [1]. Cybercriminals are more likely to 

target IoBT architecture and devices due to the sensitive 

nature of IoBT deployment (e.g., military and warfare), 

despite the fact that IoT and IoBT share many of the 

fundamental cyber security risks (e.g., malware infection 

[14]). 

Additionally, actors who target IoBT infrastructure and 

devices are more likely to be backed by the state, have 

better resources, and have received professional training. 

Two areas of active research are malware prevention and 

intrusion detection [11]. However, existing or conventional 

intrusion and malware detection and prevention solutions 

are unlikely to be suitable for real-world deployment due to 

the resource constrained nature of the majority of IoT and 

IoBT devices and customized operating systems. 

IoT malware, such as Stuxnet, which is said to have been 

designed to target nuclear plants, is likely to be "harmless" 

to consumer devices like Android and iOS devices and 

personal computers because it exploits lowlevel 

vulnerabilities in compromised IoT devices. As a result, IoT 

and IoBT-specific malware detection must be addressed 

[20]. 

Due to their potential to improve detection accuracy and 

robustness, machine learning and deep learning techniques 

have recently sparked interest in malware detection (such as 

distinguishing between malicious and benign applications) 

[15]. In most cases, the following criteria are used to 

determine whether or not machine learning and deep 

learning methods are useful for detecting malware: Positive 

100% (TP): indicates that a malware application has been 

correctly identified. Authentic Negative (TN): indicates that 

a benign application is correctly identified as non-malicious. 

Positive False (FP): indicates that a benign application is 

mistakenly identified as a malicious one. Negative False 

(FN): indicates that an application that is not malicious is 

not identified as malware. The following metrics will then 

be used to measure a system's effectiveness based on the 

aforementioned criteria: 

Cross-validation is a fundamental method in machine 

learning that is used to evaluate the extent to which the 

results of an experiment can be generalized into an 

independent dataset. Accuracy is calculated by dividing the 

number of samples that a classifier correctly detects by the 

total number of malware and goodware. 

Even though there are a lot of cross validation methods, 

such as Leave-POut, K-fold, and Repeated Random Sub-

sampling, K-fold validation methods, like 10-fold, are 

usually used when a dataset is small. In the absence of an 

independent validation set, the fitness of a model to a 

hypothetical validation set is frequently validated using K-

Fold validation methods [2, 6]. Utilizing deep learning 

techniques for malware detection is becoming increasingly 

popular as a result of the rapid pace of malware 

development and the significant increase in malware 

samples.   
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2. Related Work: 

Methods for detecting malware can be either static or 

dynamic [5]. In dynamic malware detection methods, the 

program is run in a controlled environment (such as a virtual 

machine or sandbox) to collect its behavioral attributes, such 

as the required resources, execution path, and requested 

privilege, so that it can be classified as malware or benign 

[6, 7], 8]. In order to identify potentially malicious software, 

static methods such as signature-based detection, byte-

sequence n-gram analysis, opcode sequence identification, 

and control flow graph traversal statically inspect a 

program's code. Deepsign, which uses signature generation 

to automatically detect malware, was proposed by David et 

al. [9]. In a sandbox, the latter generates a dataset from 

behavior logs of API calls, registry entries, web searches, 

port accesses, and other activities before converting the logs 

into a binary vector. For classification, they reportedly used 

a deep belief network and achieved 98.6% accuracy. 

Pascanu et al. in another study [ 1] proposed a natural 

language modeling-based method for modeling malware 

execution. In order to anticipate the subsequent API calls, 

they used a recurrent neural network to extract relevant 

features. The next API call prediction classification module 

used a combination of logistic regression and multi-layer 

perceptions, with the past events' history as a feature. It was 

stated that a true positive rate of 98.3 percent and a false 

positive rate of 0.1 percent were achieved. Demme and 

others 4] looked into whether performance counters could 

be used as a learning feature and K-Nearest Neighbor, 

Decision Tree, and Random Forest could be used as 

classifiers to build a malware detector into the hardware of 

IoT nodes. The various malware families' reported accuracy 

rates range from 25% to 100%. Alam and co. 2] identified 

malicious code by employing Random Forest on a dataset of 

smartphone devices connected to the Internet. They used 

various tree sizes to evaluate their approach and ran APKs 

in an Android emulator, recorded various features for 

classification, such as memory information, permission, and 

network. According to their findings, the best classifier has 

40 trees and a mean square root of 0.0171. Azmoodeh et al. 

[] developed a method for detecting crypto-ransomware on 

Android devices used as management nodes in IoT 

networks. 3] logged the amount of power used by running 

processes and discovered distinct local patterns of energy 

consumption for legitimate applications and ransomware. 

They classified each sub-sample of the power usage pattern 

and gathered the labels of those sub-samples to create the 

final label. According to reports, the proposed method was 

accurate by 92.75 percent. Haddad Pajouh et al. were 

motivated by the need to protect the IoT backbone from 

malware attacks. [ 44] to suggest a module for malicious 

activity detection that uses two-tier classification and two-

layer dimension reduction. In particular, the dataset was 

reduced by means of Principle Component Analysis and 

Linear Discrimination Analysis, and samples were classified 

by means of Naive Bayes and K-Nearest Neighbor. Their 

false alarm and detection rates were 84.86% and 4.86%, 

respectively. Although OpCodes are regarded as an 

effective malware detection feature, it does not appear that 

OpCodes have been utilized for IoT and IoBT malware 

detection. Another unexplored area is the use of deep 

learning to effectively detect malware in IoT networks. By 

investigating the potential of OpCodes as features for 

malware detection with deep Eigenspace learning, our goal 

in this paper is to fill this void. 

 

3. Methodology: 

Python is a high-level, interactive, object-oriented, general-

purpose interpreted programming language. Python is an 

interpreted language with a design philosophy that places an 

emphasis on code readability (for example, using 

whitespace indentation rather than curly brackets or 

keywords to delimit code blocks) and a syntax that lets 

programmers express concepts in fewer lines of code than 

they might in languages like C++ or Java. It offers 

structures that make it possible to program clearly at both 

small and large scales. There are Python interpreters for a 

lot of different operating systems. Like nearly all of its 

variant implementations, the reference implementation of 

Python, CPython, is open source software with a 

community-based development model. The non-profit 

Python Software Foundation oversees CPython. Python has 

an automatic memory management system and a dynamic 

type system. It has a large and extensive standard library 

and supports a variety of programming paradigms, including 

object-oriented, imperative, functional, and procedural. 

 

Proposed Method: 

This is, to the best of our knowledge, the first OpCode-

based deep learning approach for the detection of IoT and 

IoBT malware. The viability of our suggested strategy 

against existing OpCode-based malware detection systems 

is then demonstrated. In addition, we demonstrate how well 

our suggested strategy defends against junk-code insertion 

attacks. To be more specific, in order to ward off junk-code 

insertion attacks, the strategy we propose makes use of a 

class-wise feature selection method to overrule OpCodes 

that are not as important. In addition, we make use of every 

Eigenspace feature to improve sustainability and detection 

rates. Last but not least, as a secondary contribution, we 

offer a normalized dataset of IoT malware and benign 

applications2, which other researchers can use to compare 

and contrast possible future methods of malware detection. 

On the other hand, the proposed method falls under the 

OpCode-based detection category, so it may be applicable to 

platforms other than IoT. The IoT and IoBT applications 

will probably be made up of a long series of OpCodes, 

which are instructions for the device processing unit to carry 

out. We extracted the OpCodes using the disassembler 

Objdump (GNU binutils version 2.27.90) for disassembling 

the samples. A common method for classifying malware 
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based on its disassembled codes is to create an n-gram Op-

Code sequence. For a length of N, the number of basic 

features is CN, where C is the size of the instruction set. 

Clearly, feature explosion will occur with a significant 

increase in N. Because ineffective features will affect the 

machine learning approach's performance, reducing the size 

of the feature also improves detection robustness and 

efficiency. 

 

Malware Deduction Users look for any link, but not all 

network traffic data produced by malicious apps matches 

malicious traffic. Many forms of malware are repackaged 

versions of safe apps; Consequently, malware may also 

contain a benign app's fundamental features. As a 

consequence of this, the kind of network traffic that they 

produce can be described as a mix of benign and malicious 

traffic. The natural language processing (NLP) N-gram 

method is used to examine the traffic flow header.. 

 

Algorithm 

N-Gram sequence: 

In the fields of computational linguistics and probability, an 

n-gram is a contiguous sequence of n items from a given 

sample of text or speech. The items can be phonemes, 

syllables, letters, words or base pairs according to the 

application. The n-grams typically are collected from a text 

or speech corpus. 

Algorithm : Junk Code Insertion Procedure 

Input: Trained Classifier D, Test Samples S, Junk Code 

Percentage k 

Output: Predicted Class for Test Samples P 

1: P = fg 

2: for each sample in S do 

3: W= Compute the CFG of sample based on Section 4.1 

4: R = fselect k% of W’s index randomly(Allow duplicate 

indices)g 

5: for each index in R do 

6: Windex = Windex + 1 

7: end for 

8: Normalize W 

9: e1; e2= 1st and 2nd eigenvectors of W 

10: l1; l2= 1st and 2nd eigenvalues of W 

11: P = P 

S 

D(e1; e2; l1; l2) 

12: end for 

13: return P 

 

Support Vector Machine 

―Support Vector Machine‖ (SVM) is a supervised machine 

learning algorithm which can be used for both classification 

and regression challenges. However, it is mostly used in 

classification problems. In this algorithm, we plot each data 

item as a point in n-dimensional space (where n is number 

of features you have) with the value of each feature being 

the value of a particular coordinate. Then, we perform 

classification by finding the hyper-plane that differentiate 

the two classes very well (look at the below snapshot). The 

SVM algorithm is implemented in practice using a kernel. 

The learning of the hyper plane in linear SVM is done by 

transforming the problem using some linear algebra, which 

is out of the scope of this introduction to SVM. A powerful 

insight is that the linear SVM can be rephrased using the 

inner product of any two given observations, rather than the 

observations themselves. The inner product between two 

vectors is the sum of the multiplication of each pair of input 

values. For example, the inner product of the vectors [2, 3] 

and [5, 6] is 2*5 + 3*6 or 28. The equation for making a 

prediction for a new input using the dot product between the 

input (x) and each support vector (xi) is calculated as 

follows:  

 

                                              f(x) = B0 + sum(ai * (x,xi))  

 

This is an equation that involves calculating the inner 

products of a new input vector (x) with all support vectors in 

training data. The coefficients B0 and ai (for each input) 

must be estimated from the training data by the learning 

algorithm. 

 

 

 
Fig 1: Architecture Diagram. 

 

 

4. Result and Discussion: 

Two congruent algorithms—1 and 2—described in Section 

1 are applied to our generated dataset using Adaboost as the 

classification algorithm to demonstrate the robustness of our 

proposed strategy and compare it to other proposals. The 

Python Django Framework was used in all tests on a 

Microsoft Windows 10 Pro computer with an Intel Core i5 

2.67GHz and 4GB of RAM. During the validation, a 10-fold 



International Conference on Intelligent Technologies & Science - 2022 

(ICITS-2022) 
 

Organized by: International Journal of Research and Development in Applied Science and Engineering, India 

All Rights Reserved © 2022 IJRDASE 

cross validation was used. It is abundantly clear that our 

proposed method performs better than those of Hashemi et 

al. and Santos and others 

 

In the not-too-distant future, IoT, particularly IoBT, will 

become increasingly significant. There will never be a 

malware detection solution that works perfectly, but we can 

be sure that cyber attackers and defenders are always in a 

race. As a result, it is critical that we continue to exert 

pressure on threat actors. An IoT and IoBT malware 

detection strategy based on class-wise selection of Op-Code 

sequence as a feature for the classification task was 

presented in this paper. For each sample, a graph of selected 

features was created, and a deep Eigenspace learning 

method was used to classify malware. With an accuracy rate 

of 98.37 percent and a precision rate of 98.59 percent, our 

evaluations demonstrated the robustness of our malware 

detection strategy, as well as its ability to prevent junk code 

insertion attacks. 

 

The method used by Santos et al. is a fundamental OpCode-

based malware detection algorithm and Hashemi et al.'s 

strategy. is the closest in that it uses eigenspace as its 

foundation. Precision is an overall measures for assessing 

execution of a calculation for both malware and harmless 

class recognizable proof. The proposed method has a high 

accuracy of 99.68 percent, whereas Hashemi et al.'s and 

Santos and others respectively achieve an accuracy of 

98.59% and 95.91%. A crucial criterion is the recall or 

detection rate, and the proposed method achieves 98.37 

percent, compared to 81.55% and 77.70% for the other two 

methods. 

 

Additionally, our proposed strategy performs better than 

those of Hashemi et al. and Santos and others, in terms of F-

Measure and precision rate. During the classification phase, 

it appears that beneficial features of minor classes are more 

effective when class-wise feature selection is used. 

Additionally, when OpCode's distance is calculated using 

Formulation (6), more OpCode sequence patterns can be 

represented in the sample's graph. Additionally, it appears 

that a superior classifier is produced by utilizing deep neural 

networks for classification. 
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5.  Conclusion: 

In the not-too-distant future, IoT, particularly IoBT, will 

become increasingly significant. There will never be a 

malware detection solution that works perfectly, but we can 

be sure that cyber attackers and defenders are always in a 

race. As a result, it is critical that we continue to exert 

pressure on threat actors. An IoT and IoBT malware 

detection strategy based on class-wise selection of Op-Code 

sequence as a feature for the classification task was 

presented in this paper. For each sample, a graph of selected 

features was created, and a deep Eigenspace learning 

method was used to classify malware. With an accuracy rate 

of 98.37 percent and a precision rate of 98.59 percent, our 

evaluations demonstrated the robustness of our malware 

detection strategy, as well as its ability to mitigate junk code 

insertion attacks. 
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