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Abstract: We have developed a simple medical application 

relevant machine learning model for enzyme inhibition 

parameter search for normal and impaired kidney 

function for two drugs. The machine learning model has 

been developed in the MATLAB platform to accelerate 

model reuse by other drugs discovery application. With 

the speed of the model solution, the real-life 

pharmaceutical applications, and the GUI, the machine 

learning model can be readily used in educational contexts 

as a dynamic, interactive visualization tool for learning 

about biomedical and chemical application of computer 

science and engineering. The model and results of this 

work will enable further studies on the impacts of 

inhibition of enzymes in disease states such as kidney 

infection. 
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1. Introduction: 

Drugs are key therapeutic treatments for a wide variety of 

medical conditions and are an essential building block of a 

functioning health system (World Health Organization, 2010). 

However, there are many medical needs, both existing and 

emergent, that are currently unmet by existing medicines 

(Kaplan et al., 2013). The ability to rapidly and effectively 

address unmet medical needs as and when they occur has been 

further highlighted by the recent worldwide emergency caused 

by the current coronavirus pandemic (COVID-19, Rosa et al., 

2020). Developing new therapeutics is an extremely 

challenging, multi-stage process, involving many disciplines 

and typically requiring many years to complete. On average 

each new therapeutic is estimated to cost $1.5-3 billion, 

depending on how this is calculated, (Avorn, 2015; DiMasi et 

al., 2016) and takes over ten years (Paul et al., 2010). On 

average, the FDA has approved 31 novel drugs per year from 

2008-16 (U.S. Food and Drug Administration, 2018a). These 

figures are not improving and, as such, current practices have 

been called unsustainable (Moors et al., 2014; Ernst & Young, 

2017). Much of the cost of drug discovery arises from the high 

chance of failure, with the investment of sufficient time and 

financial resource far from a guarantee of success. A recent 

study found that only 13.8% of all drug development 

programs eventually lead to approval while the overall success 

rate for drugs that treat rare diseases, also known as „orphan 

drugs‟, was as low as 6.2% (Wong et al., 2018). The high cost 

and low productivity in drug development is a long-standing 

problem, for which a solution is critically important (Myers 

and Baker, 2001). Computer-aided drug design (CADD) is 

seen as having the potential to accelerate this process and 

reduce the expense of developing new therapeutics (Ou-Yang 

et al., 2012). However, despite broad adoption of 

computational methodologies across the entire drug discovery 

workflow, costs have continued to increase (DiMasi et al., 

2003; Avorn, 2015; DiMasi et al., 2016) with sustained low 

productivity (Khanna, 2012). New techniques and approaches 

are still sorely needed to revolutionise drug discovery. 

Recently, there has been renewed interest in the use of 

artificial intelligence across a broad range of fields, driven by 

the rise of deep learning. While many of the core principles of 

deep learning were introduced decades ago (e.g. Rosenblatt, 

1958; Fukushima, 1980; Rumelhart et al., 1986), it was not 

until 2012 that the power and effectiveness of such techniques 

was demonstrated, in what is now known as the “ImageNet 

moment”. In the annual ImageNet Large Scale Visual 

Recognition Challenge, Krizhevsky et al. (2012) performed 

41% better than the next best competitor by adopting a deep 

neural network. It is widely acknowledged that this 

breakthrough was made possible by the combination of 

unprecedented availability of labelled data and computational 

power. This has led to learningbased systems matching, and 

indeed often surpassing, humans at image recognition (He et 

al., 2015), single-player games (Mnih et al., 2015), and two-

player games including Go (Silver et al., 2016; Silver et al., 

2017), Chess (Silver et al., 2018), and StarCraft II (Vinyals et 

al., 2019). 

These advances quickly caught the attention of the field of 

cheminformatics, with several early promising results 

reported. In 2013, deep neural networks were the best 

performing models in the Merck molecular activity challenge 

(Ma et al., 2015) while a similar result was obtained in the 

Tox21 toxicity data challenge in 2015 (Mayr et al., 2016). 

Learning-based algorithms have a long history in drug 

discovery. Early quantitative structure activity relationship 

(QSAR) models were first described in the early 1960s 

(Hansch et al., 1962) and have become commonplace (Salt et 

al., 1992). However, traditional machine learning and classical 

statistical approaches typically require the explicit 

featurisation of the target input, such as molecules or protein-

ligand complexes, in the form of a one-dimensional vector 

(Klambauer et al., 2019). This requirement has resulted in the 

development of hundreds of descriptors for molecular property 

prediction alone (e.g. Deng et al., 2004; Zhang et al., 2006; 

Durrant and McCammon, 2011). However, an advantage of 

deep learning methods that is seen as key to their success is 

the ability to eliminate the need for abstraction and allow a 
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much broader variety of data types be learnt from directly 

(Klambauer et al., 2019). 

Finally, the QSAR models discussed above are typically 

bespoke models, constructed within the context of a specific 

drug discovery project based on a small amount of data. Thus, 

while useful, they do not have general applicability, and often 

do not extend beyond a specific chemical series. Success in 

other domains (e.g. ImageNet, Deng et al., 2009) has shown 

that a key requirement for generalpurpose models is sufficient 

data (Halevy et al., 2009; Sun et al., 2017). Over the past 

decade, there has been a rapid increase in the amount of 

publicly available molecular activity and biochemical data 

(e.g. Kim et al., 2015; Papadatos et al., 2015), as well as 

structural data (Berman et al., 2000; Burley et al., 2019), 

largely due to increased focus and the emergence of new 

experimental techniques (e.g. high-throughput screening, 

Inglese et al., 2007). An example of the benefits of the 

availability of such data that would not have been possible 

otherwise are the recent successes in the field of protein-

structure prediction, culminating in the performance of 

AlphaFold (Senior et al., 2020) and AlphaFold 2 (Jumper et 

al., 2020) in CASP 13 and 14, respectively (Kryshtafovych et 

al., 2019).  

 

2. Methodology: 

Angiotensin II is a hormone that regulates the blood pressure 

by constricting the blood vessels. A sustained high level of 

Ang II leads to hypertension, which increases the work 

required for the heart to pump blood through the body and 

causes numerous health problems. Angiotensin converting 

enzyme (ACE) inhibitors are a class of pharmaceuticals that 

inhibit the production of Ang II from angiotensin I (Ang I), 

thereby reducing the Ang II concentration and thus lowering 

the blood pressure. The conversion of Ang I to Ang II is a 

crucial step in the biochemical reaction network called the 

renin-angiotensin system (RAS) (Fig. 1). Ang II concentration 

has a negative feedback effect on the production of renin, 

which catalyzes the upstream production of Ang I from 

angiotensinogen (AGT). Here, we consider the subset of the 

RAS reaction network that includes the hormones and the 

enzymes affected directly by ACE inhibition (Fig. 1). 

 
Fig 1: The reaction network for the renin-angiotensin 

system. 

 

ACE inhibitors are known to aid patients with hypertension, 

congestive heart failure, and chronic kidney disease (CKD) 

(Balfour and Goa, 1991; Brown and Vaughan, 1998; Corbo et 

al., 2016). CKD is a severe complication of diabetes and a 

significant factor leading to morbidity and mortality in both 

type I and type II diabetic patients. CKD is the primary cause 

for end-stage renal disease and can lead to kidney failure if 

Ang II is not regulated. It is important to slow the rate of 

progression of CKD before irreversible kidney damage occurs, 

and ACE inhibitors have been shown to be effective at doing 

so (Asher and Murray, 1991; Hoyer et al., 1993; Brown and 

Vaughan, 1998; Hsu et al., 2014; Yamout et al., 2014). As 

both diabetes and chronic kidney disease are comorbidities of 

hypertension, ACE inhibitors are particularly attractive 

pharmaceuticals for targeting multiple indications 

simultaneously. Many ACE inhibitor pharmaceuticals are on 

the market. The ACE inhibitors benazepril and cilazapril are 

selected for this study because both are renoprotective and 

used to treat CKD and hypertension (Hoyer et al., 1993; Niu et 

al., 2014). Also, studies have been conducted to collect data 

on benazepril and cilazapril drug dose and effects on the RAS 

for hypertensive human patients with normal renal function 

(NRF) and impaired renal function (IRF) (Shionoiri et al., 

1988, 1992; Kloke et al., 1996). The model and parameter 

estimation techniques in the present work could be readily 

adapted for other ACE inhibitor drugs if pharmacokinetic and 

pharmacodynamic experimental stud ies have been performed 

to characterize the actions of those drugs. Note that benazepril 

and cilazapril are both extensively bioactivated to diacid 

chemical forms, as is common for most ACE inhibitors 

(Hoyer et al., 1993; Toutain and Lefebvre, 2004; LeBlanc et 

al., 2006). Therefore, all parameters and calculations involving 

either drug only use the pharmacologically active diacid form 

of the corresponding drug. 

 

3. Machine Learning 

Machine learning attempts to learn patterns directly from data 

without explicit functional pre-specification for use in 

prediction, decision making, or other out comes of interest 

(Mitchell, 1997; Murphy, 2012). These methodologies are 

often classified into several paradigms: supervised learning, 

unsupervised learning, and reinforcement learning. However, 

these paradigms are not mutually exclusive, and there are 

many connections between them. 

In supervised learning we are interested in fitting a function f : 

X →Y using a data set, D, of n labelled observations 

D = {(xi, yi), i = 1 . . . n} 

 

where xi ϵ X and yi ϵ Y . Typical applications include 

regression and classification tasks. 

In unsupervised learning, we do not have access to labels and 

thus our data set, D, consists of only observations of the 

source domain X, reducing to 

D = {xi, i = 1 . . . n} 

In this paradigm, the goal is to find some notion of internal 

structure or common featurisation. Clustering (Lloyd, 1982), 
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anomaly detection (Hodge and Austin, 2004), and 

dimensionality reduction techniques (Maaten et al., 2007) are 

common unsupervised methodologies. 

Finally, reinforcement learning aims to learn an optimal policy 

for an agent in an environment, given some notion of reward. 

While many formulations exist, a basic and natural one is 

D = {(si, ai, ri), i = 1 . . . n}  

where si ϵ S is the state of the system of environment, ai 2 A is 

the action taken by the agent, and ri 2 R is the reward given 

for taking action ai in state si. For the work presented in this 

thesis we mostly are concerned with the supervised and 

unsupervised paradigms, with a particular emphasis on deep 

learning-based models and their applications to drug 

discovery. In the remainder of this section, we will introduce 

two broad categories of machine learning algorithms that are 

applicable within any of the paradigms outlined above. The 

first, convolutional neural networks (CNNs), led to the 

“ImageNet moment” discussed previously. 

 

4. Result and Discussion: 

In the experimental data used to fit the parameters, the dose 

for benazepril was 5 mg and that for cilazapril was 1.25 mg. 

The following parameters for the PD model were estimated for 

four cases (benazepril and cilazapril for both normal function 

(NRF) and for impaired function (IRF): Vmax/KM, kR, kf, 

kAII, and f. The values reported for the fitted parameters were 

the median of the best-fit parameter sets along with the 

minima and maxima of the ranges of parameters (Table 5 for 

benazepril and Table 6 for cilazapril). The best-fit parameter 

sets were those with WSSR within 1% of that for the single 

best set (74, 93, 7, and 93 out of 101 multistart parameter 

sets for benazepril NRF, benazepril IRF, cilazapril NRF, and 

cilazapril IRF, respectively). The 95% prediction confidence 

intervals were determined using kernel density estimation with 

the best-fit parameter sets. The simulation results for the fitted 

parameters for all four cases are shown for output variables 

CAI, CAII, and PRA, respectively. Data obtained from 

(Shionoiri et al., 1992, 1988) are also shown in the figures. 

 
Fig 2: Benazepril validation results: diacid form of 

benazepril concentration versus time after a single dose for 

5 mg and 10 mg doses for NRF and IRF. 

 

 
Fig 3: Benazepril validation results for doses of benazepril 

for NRF:  Ang I concentration 

 

 
Fig 4: Benazepril validation results for doses of benazepril 

for  Ang II concentration as functions of time 

 

 

 

 

 
Fig 5: Benazepril validation results for doses of benazepril 

for  Ang II concentration as functions of time 
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Fig 6: Validation results for doses of benazepril  for 

inhibition as a function of drug diacid concentration 

 

5. Conclusion: 

We have developed a simple physiologically relevant PK/PD 

model for ACE inhibition parameterized for normal and 

impaired renal function for two drugs. The model has also 

been packaged as a MATLAB app to accelerate model reuse 

by other researchers and/or educators. With the speed of the 

model solution, the real-life pharmaceutical applications, and 

the MATLAB GUI, the model can be readily used in 

educational contexts as a dynamic, interactive visualization 

tool for learning about biomedical and chemical engineering. 

The model and results of this work will enable further studies 

on the impacts of ACE inhibition in disease states such as 

CKD. In the future, the predictions of systemic hormone levels 

for Ang I and Ang II could be fed into clinically relevant 

multiscale models of local tissue effects in microvasculature 

complications of CKD, diabetes, or hype. 
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