
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

A Brief Review on Software Quality Prediction using

Artificial Intelligence

Manish Kumar Maurya, Dr. Rohitashwa Pandey

Department of Computer Science and engineering,

Bansal Institute of Technology, Lucknow, India,

manish22maurya@gmail.com

Abstract: Software quality prediction has emerged as a

critical area of research and practice within the software

engineering community. The ability to predict the quality

of software systems before they are fully developed can

significantly reduce the cost of software development and

maintenance. This review paper provides an overview of

the state-of-the-art in software quality prediction,

including the methodologies, models, and tools that have

been developed to predict various aspects of software

quality. We discuss the challenges and opportunities in

this field, highlighting the need for more accurate and

reliable prediction models that can adapt to the rapidly

changing landscape of software development.

Keywords: Attribute selection, Defect Prediction,

Software Quality, Defect Detection.

1. Introduction

Software quality is a multifaceted concept that encompasses

various attributes such as reliability, maintainability,

performance, and security. Predicting the quality of software

before it is released can help developers identify potential

issues early in the development process, leading to more

robust and reliable software systems. The goal of software

quality prediction is to estimate these quality attributes based

on available data, such as code metrics, historical data, and

user feedback.

Software quality is a multifaceted concept that encompasses

the overall value and performance of software systems. It is

pivotal in determining the success and reliability of software

applications across various industries. At its core, software

quality refers to how well a software product meets its

requirements and satisfies the needs of its users. It involves a

comprehensive assessment of various attributes, including

functionality, reliability, usability, efficiency,

maintainability, and portability. Ensuring high software

quality is crucial because it directly impacts user satisfaction,

operational efficiency, and the long-term sustainability of

software products.

One of the primary aspects of software quality is

functionality, which measures how accurately and completely

the software performs the tasks it is intended to perform. This

includes the correctness of the software's outputs, the

accuracy of its calculations, and its ability to handle edge

cases and errors gracefully. Functionality is often evaluated

through rigorous testing processes, such as unit testing,

integration testing, and system testing, to identify and rectify

defects before the software is deployed.

Reliability is another critical dimension of software quality.

It refers to the software's ability to operate consistently and

correctly over time, without failures. Reliable software

minimizes downtime and ensures continuous availability,

which is especially important for mission-critical

applications. Reliability is often quantified using metrics such

as mean time between failures (MTBF) and mean time to

repair (MTTR), which help developers understand and

improve the robustness of their software.

Usability is a key factor that determines how easily and

effectively users can interact with the software. High usability

ensures that users can accomplish their tasks efficiently, with

minimal learning curve and effort. This involves intuitive

user interfaces, clear and concise documentation, and

responsive design that caters to the needs of diverse user

groups. Usability testing and user feedback play vital roles in

refining the user experience and enhancing overall

satisfaction.

Efficiency in software quality pertains to the optimal use of

resources, including processing power, memory, and

bandwidth. Efficient software performs its tasks quickly and

consumes minimal resources, leading to faster response times

and reduced operational costs. Performance testing and

optimization techniques are employed to identify bottlenecks

and improve the software's efficiency.

Maintainability is the ease with which software can be

modified to correct defects, improve performance, or adapt to

changing requirements. Maintainable software is

characterized by clear and well-documented code, modular

design, and adherence to coding standards. It allows

developers to make changes swiftly and with minimal risk of

introducing new defects. Maintainability is crucial for the

long-term sustainability of software, as it ensures that the

software can evolve and remain relevant over time.

Portability is the software's ability to operate across different

environments and platforms with minimal modification.

Portable software can be easily transferred and adapted to

various hardware and software configurations, enhancing its

flexibility and reducing the costs associated with platform-

specific development. Ensuring portability involves writing

platform-independent code and using standard libraries and

frameworks.

In conclusion, software quality is a comprehensive measure

of the value and performance of software systems. It

encompasses multiple attributes, including functionality,

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

reliability, usability, efficiency, maintainability, and

portability. Achieving high software quality is essential for

delivering software that meets user expectations, operates

reliably and efficiently, and can be easily maintained and

adapted over time. Through rigorous testing, user-centered

design, and adherence to best practices, developers can ensure

that their software products achieve the highest standards of

quality, ultimately leading to greater user satisfaction and

success in the marketplace.

2. Methodologies for Software Quality Prediction

2.1 Statistical Models

Statistical models, such as regression analysis, have been

widely used for software quality prediction. These models

rely on historical data to identify relationships between code

metrics and quality attributes. Linear regression, logistic

regression, and discriminant analysis are common statistical

techniques used in this context.

2.2 Machine Learning Models

Machine learning has revolutionized the field of software

quality prediction. Techniques such as decision trees, support

vector machines, neural networks, and ensemble methods

have been applied to predict various quality attributes.

Machine learning models can handle complex relationships

and interactions between variables, making them suitable for

predicting non-linear and non-monotonic quality attributes.

2.3 Hybrid Models

Hybrid models combine statistical and machine learning

approaches to leverage the strengths of both. For example, a

hybrid model might use statistical methods to preprocess data

and machine learning to build the prediction model. These

models aim to improve prediction accuracy and reduce the

limitations of individual approaches.

3. Challenges in Software Quality Prediction

3.1 Data Quality and Availability

The accuracy of software quality prediction heavily depends

on the quality and quantity of available data. In practice,

obtaining reliable and comprehensive datasets is challenging

due to the proprietary nature of software development data

and the lack of standardized data collection processes.

3.2 Model Generalization

Building models that generalize well across different

software projects and domains is a significant challenge.

Software projects vary greatly in terms of size, complexity,

and development practices, which can affect the applicability

of prediction models.

3.3 Evolving Software Development Practices

The rapid evolution of software development practices, such

as the adoption of agile methodologies and DevOps, poses

new challenges for software quality prediction. Prediction

models must adapt to these changes to remain relevant.

4. Opportunities and Future Directions

4.1 Big Data and Analytics

The advent of big data analytics presents new opportunities

for software quality prediction. By leveraging large volumes

of data from various sources, such as version control systems,

bug tracking systems, and continuous integration servers,

more accurate and comprehensive prediction models can be

developed.

4.2 Deep Learning

Deep learning, a subset of machine learning, has shown

promise in various domains due to its ability to learn complex

patterns. Applying deep learning to software quality

prediction could lead to more sophisticated models that can

capture the intricate relationships between code

characteristics and quality attributes.

4.3 Transfer Learning

Transfer learning, which involves applying knowledge

gained from one problem to a different but related problem,

could be beneficial in software quality prediction. By

transferring knowledge across projects and domains,

prediction models could become more robust and

generalizable.

5. Related Work:

In [1], Ai-jamimi and Hamid proposed a fluffy rationale based

SDP model. The presentation of this rationale based forecast

model has been checked by genuine programming projects

information. They track down this model as the best method

for acquiring prevailing arrangement of measurements. This

thus make fluffy rationale based model more legitimate and

good when contrasted with different models. Result showed

that utilizing all product measurements gives the most

minimal exactness and less fulfillment as contrasted and the

other arrangement of measurements. The applicable

arrangement of measurements gives better outcome that is

measurements gotten after expulsion of excess

measurements.

In [2], Koroglu et al. utilized seven old renditions of

programming and their extra component to track down the

deformities of current forms. They analyzed a few SDP

process that is Naïve Bayes, choice tree, and irregular

backwoods and observes the arbitrary woods has the most

noteworthy prescient power when contrasted with different

models. This multitude of models are contrasted and the AUC

esteem that is region under bend. They observe that irregular

timberland has the most elevated AUC esteem.

In [3], Sharmin proposed an original strategy of quality

determination that is choice of trait with log sifting (SAL).

They utilized the log sifting to preprocess the information. At

long last, reaches the resolution that this strategy gives the

more exactness of SDP when contrasted with different

procedures. This technique is applied on a few broadly

utilized openly accessible datasets

In [4], Sethi and Gagandeep track down that the fake brain

organization (ANN) gives the better outcome when

contrasted with fluffy based rationale model. ANN gives the

more precise worth. It tends to be utilized in half breed way

to deal with an enormous dataset. These model is investigated

with the mean size of relative blunder (MMRE) and adjusted

mean greatness of relative mistake (BMMRE).

In [5], Suffian involved the measurements to observe the

exhibition of various models that is relapse model with

different models. They observe that relapse investigation is

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

generally exact when contrasted with different models. They

utilized the p-worth of 0.05 as the edge for the choice of

qualities of programming.

In [6], Ami et al. proposed an original methodology of

property choice technique for development of viable

deformity expectation model. This approach observes the

characteristics with high exactness by working out the

complete load of each property and arranging each quality in

light of all out weight. They utilized the one classifier that is

Naïve Bayes in their review to develop the SDP model.

In [7], Can et al. presented a clever methodology for

programming deformity forecast PSO and SVM called as P-

SVM model and saw that P-SVM has more precision than BP

brain organization, SVM Model and GA-SVM model. They

found this model as generally powerful. The dataset utilized

is just JM1 for proposing the clever methodology of P-SVM.

In [8], Jiarpakdee finds in the wake of examining 101

accessible datasets that 10-67% of measurements of these

datasets are excess. Additionally, it has been seen that end of

excess measurements prior to building the SDP model is vital.

It works on the presentation of SDP model.

In [9], Wang et al. seen that multivariant Gauss Naïve Bayes

has best execution when contrasted with all sort of classifiers.

It is best imperfection forecast model. They additionally

explore different avenues regarding J48 to track down the

presentation of multivariant Gauss Naïve Bayes. They

observed that MVGNB is best in anticipating the deformities

at a beginning phase of programming improvement.

In [10], Liu et al. proposed a SDP model for that help arranged

programming. They observe the SDP model in view of the

current model, QDPSOMO. It gives better administration of

value to programming that relies upon EXPERT COCOMO.

It is shaped by the blend of imperfection expectation,

estimation and the board.

In [11], Kakkar and Sarika Jain closed from their examination

work that cross breed model of classifier or the mix of at least

one classifier generally gives the preferable outcome over any

single classifier. The half breed approach of choice of quality

gives more exactness. It likewise assists us with dissecting the

effect of property choice and preprocessing of information on

various SDP models. Execution of five classifiers has been

thought about, i.e., IBk, KStar, LWL, Random backwoods,

and Random tree. It has been seen that LWL gave the

exactness of 92.23% and has best execution.

In [12], Verma and Kumar investigated the numerous relapse

in their exploration work. They track down the effect of

bunching on deformity forecast. Three bunches are shaped.

Result has shown that forecast model shaped in the wake of

grouping showed preferred outcome rather over applying

expectation model on entire programming project.

In [13], Yang et al. proposed an original methodology that is

figuring out how to-rank (LTR) approach for the development

of SDP model. This approach assists with finding the test

assets all the more really by observing which module of

programming have more deformities. They observed that

figuring out how to rank methodology gives better

expectation exactness when contrasted with direct model

utilizing LS. Be that as it may, LTR now and again isn't giving

as better outcome as given by Random Forest. LTR isn't

performing better in all cases.

In [14], Sawadpong and Allen utilize an uncommon dealing

with for execution of SDP model. They proposed special case

based programming measurements. It depends on the

underlying ascribes of exemption dealing with call diagrams.

They arrived at the resolution that assuming SDP model that

is relies upon uncommon based measurements gives more

outcome when contrasted with customary expectation model.

They utilized the product vaults that have mined information

and imperfection reports for their exploration.

In [15], Shuai et al. executed Genetic calculation with SVM

(GA-CSSVM) on NASA datasets. They inferred that GA-

CSSVM performed better when contrasted with increments

typical SVM.

In [16], Gabriel Kofi Armah et al. performed Multilevel

preprocessing by choosing the properties two times and

sifting example threefold. Four K-NN classifier's

preprocessing that is KNN-LWL, KStar, IBK, and IB1 results

were dissected and contrasted and irregular tree, arbitrary

timberland, and non-settled summed up classifier. Four

execution boundary that is exactness, review, Area under

bend (AUC) and accuracy are utilized to analyze them.

Results showed that presentation of Random Forest expanded

by performing twofold preprocessing.

In [17], Lo et al. consolidated SVM and Auto Regression

Integrated Moving Average (ARIMA) for SDP. They

dissected that exhibition of cross breed model is better when

contrasted with customary forecast model and diminishes

blunder rate.

In [18], Oral et al. performed SDP by joining three grouping

procedures that is NB, casting a ballot highlight stretch and

MLP utilizing five datasets. He reasoned that mix of these

classifiers gives better execution to SDP models particularly

for inserted framework.

In [19], Singh et al. broke down the exhibition of various

mining methods that is Logistic Regression, irregular

backwoods, C4.5, Association Rule Mining, Naïve Bayes,

ANN, SVM, hereditary calculation and Fuzzy Programming.

They presumed that Data Mining strategies are extremely

useful for eliminating minor imperfections.

In [20], Challagulla et al. looked at 13 AI techniques. They

track down that NB, brain organization, and Instance-based

learning performed better compared to other when contrasted

with any remaining strategies.

While many investigations in the product deformity forecast

independently report the similar presentation of the

displaying methods utilized, there is no solid agreement on

which performs best when the examinations are checked

person out.

Bibi et al. (Bibi, Tsoumakas, Stamelos, and Vlahavas, 2008)

have detailed that Regression by means of Classification

(RvC) functions admirably. Lobby et al. featured that reviews

utilizing Support Vector Machine (SVM) perform less well.

These might be performing roar assumption as they require

boundary enhancement for the best exhibition (T. Corridor et

al., 2012).

C4.5 appears to perform roar assumption in the event that

they incorporate imbalanced class dispersion of datasets, as

the calculation

is by all accounts delicate to this (Arisholm, Briand, and

Fuglerud, 2007) (Arisholm, Briand, and Johannessen, 2010).

Credulous Bayes (NB) and Logistic Regression (LR) appear

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

to be the techniques utilized in models that performs

moderately well in the field of programming deformity

expectation (Menzies et al., 2007) (Song et al., 2011). NB is

a surely known calculation and regularly being used.

Concentrates on utilizing Random Forests (RF) didn't

proceed as well true to form (T. Lobby et al., 2012). In any

case, many investigations utilizing the NASA dataset utilize

RF and report great performanc (Lessmann et al., 2008).

A few investigations on programming imperfection forecast

showed that Neural Network (NN) has a decent precision as

a classifier

(Lessmann et al., 2008) (Benaddy and Wakrim 2012) (Quah,

Mie, Thwin, and Quah, 2003) (T M Khoshgoftaar, Allen,

Hudepohl, and Aud, 1997). NN has been demonstrated to be

more sufficient for the issue on the muddled and nonlinear

connection between programming measurements and

deformity inclination of programming modules (Zheng

2010). Nonetheless, the practicability of NN is restricted

because of trouble in choosing suitable boundaries of

organization engineering, including number of stowed away

neuron, learning rate, force and preparing cycles (Lessmann

et al., 2008).

In any case, models appear to have performed best where the

right method has been chosen for the right arrangement of

information. No specific classifiers that plays out awesome

for all the datasets (Challagulla, Bastani, and Paul, 2005)

(Song et al., 2011). Subsequently, the examinations and

benchmarking aftereffects of deformity expectation utilizing

AI classifiers demonstrate that the unfortunate precision level

is predominant (Sandhu, Kumar, and Singh, 2007) (Lessmann

et al., 2008), huge execution contrasts couldn't be

distinguished (Lessmann et al., 2008) and no specific

classifiers play out awesome for all the datasets (Challagulla,

Bastani, and Paul, 2005) (Song et al., 2011).

Karpagavadivu.K, et.al. (2012)[21] dissected the presentation

of different strategies utilized in programming issue forecast.

And furthermore depicted a few calculations and its purposes.

They observed that the point of the shortcoming inclined

module expectation utilizing information mining is to work

on the nature of programming improvement process. By

utilizing this procedure, programming administrator really

apportion assets. The general mistake paces of all strategies

are looked at and the benefits of all techniques were broke

down. Ahmet Okutan and Olcay Taner Yıldız, (2013)[22]

proposed another bit technique to anticipate the quantity of

imperfections in the product modules (classes or documents).

The proposed technique depends on a pre-processed piece

lattice which depends on the likenesses among the modules

of the product framework. Novel bit technique with existing

bits in the writing (straight and RBF bits) has been analyzed

and show that it accomplishes tantamount outcomes. Besides,

the proposed deformity expectation strategy is likewise

similar with some current well known imperfection forecast

techniques in the writing for example straight relapse and

IBK. It was seen that before test stage or support, designers

can utilize the proposed technique to effortlessly anticipate

the most blemished modules in the product framework and

spotlight on them essentially as opposed to testing every

single module in the framework. This can diminish the testing

exertion and the absolute venture cost consequently.

Yajnaseni Dash, Sanjay Kumar Dubey, (2012)[23] studied

different examination strategies for the expectation of OO

metric utilizing brain network procedures. This procedure

was viewed as the most appropriate for expectation in the

event of article situated measurements. Brain network utilized

least estimation function when contrasted with other

computerized reasoning procedures. It has better portrayal

capacity and is fit for performimg muddled capacities. Ms.

Puneet Jai Kaur, Ms. Pallavi, (2013)[24] involved various

information digging procedures for programming mistake

forecast, similar to affiliation mining, arrangement and

grouping strategies. This has helped the computer

programmers in growing better models. In the event that

where deformity marks are absent, solo strategies can be

utilized for model turn of events.

Xiaoxing Yang, et.al. (2014)[25] Used the position execution

advancement method for programming determining model

turn of events. For this position to it was utilized to learn

approach. The model was created on past work and was

subsequently read up for working on the presentation of the

model. . The work incorporates two perspectives: one is an

original use of the figuring out how to-rank way to deal with

genuine informational indexes for programming imperfection

expectation, and the other is a complete assessment and

examination of the figuring out how to-rank technique against

different calculations that have been utilized for foreseeing

the request for programming modules as indicated by the

anticipated number of deformities. This study shows that the

impact of advancement of the model exhibition utilizing rank

to learning approach really further develop the expectation

exactness.

6. Conclusion

Software quality prediction is an essential component of

modern software engineering that can lead to significant

improvements in software quality and development

efficiency. While there have been significant advancements

in this field, challenges remain, particularly in data

availability, model generalization, and adapting to evolving

software development practices. Future research should focus

on leveraging big data analytics, exploring deep learning

techniques, and utilizing transfer learning to overcome these

challenges and advance the state-of-the-art in software

quality prediction.

References:

[1]. Ai-jamimi, H. A. (2016). Toward comprehensible

software defect prediction models using fuzzy logic (pp. 127–

130).

[2]. Koroglu, Y., Sen, A., Kutluay, D., Bayraktar, A., Tosun,

Y., Cinar, M., & et al. (2016). Defect prediction on a legacy

industrial software : A case study on software with few

defects. In 2016 IEEE/ACM 4th International Workshop on

Conducting Empirical Studies in Industry (CESI) (pp. 14–

20).

[3]. Sharmin, S. (2015). SAL: An effective method for

software defect prediction (pp. 184–189).

[4]. Sethi, T., & Gagandeep. (2016). Improved approach for

software defect prediction using artificial neural networks. In

2016 5th International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions) (pp. 480–485).

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

[5]. Suffian, M. D. M., Ibrahim, S., Dhiauddin, M., Suffian,

M. D. M., & Ibrahim, S. (2012). A prediction model for

system testing defects using regression analysis. International

Journal of Soft Computing and Software Engineering, 2(7),

69–78.

[6]. Mandal, P.,&Ami, A. S. (2015). Selecting best attributes

for software defect prediction. In 2015 IEEE International

WIE Conference on Electrical and Computer Engineering

(pp. 110–113).

[7]. Can, H., Jianchun, X., Ruide, Z., Juelong, L., Qiliang, Y.,

& Liqiang, X. (2013). A new model for software defect

prediction using Particle Swarm Optimization and support

vector machine. In 2013 25th Chinese Control and Decision

Conference (pp. 4106–4110).

[8]. Jiarpakdee, J., Tantithamthavorn, C., Ihara, A., &

Matsumoto, K. (2011). A study of redundant metrics in defect

prediction datasets (pp. 37–38).

[9]. Wang, T.,&Li,W. (2010).NaïveBayes software defect

predictionmodel. IEEE, no. 2006 (pp. 0–3).

[10]. Liu, J., Xu, Z., Qiao, J., & Lin, S. (2009). A defect

prediction model for software based on service oriented

architecture using EXPERT COCOMO. In 2009 Chinese

Control and Decision Conference (pp. 2591–2594).

[11]. Kakkar, M., & Jain, S. (2016, January). Feature selection

in software defect prediction: A comparative study. In 2016

6th International Conference on Cloud System and Big Data

Engineering (Confluence), (pp. 658–663).

[12]. Verma, D. K., & Kumar, S. (2015). Emperical study of

defects dependency on software metrics using clustering

approach (pp. 0–4).

[13]. Yang, X., Tang, K., & Yao, X. (2015). A learning-to-rank

approach to software defect prediction. IEEE Transactions on

Reliability, 64(1), 234–246.

[14]. Sawadpong, P., & Allen, E. B. (2016). Software defect

prediction using exception handling call graphs : A case study.

[15]. Shuai, B., Li, H., Li, M., Zhang, Q., & Tang, C. (2013).

Software defect prediction using dynamic support vector

machine. In 2013 9th International Conference on

Computational Intelligence and Security (CIS) (pp. 260–

263).

[16]. Armah, G. K., Luo, G., & Qin, K. (2013). Multi_level

data pre_processing for software defect prediction. In 2013

6th International Conference on Information Management,

Innovation Management and Industrial Engineering (ICIII)

(pp. 170–174).

[17]. Lo, J.-H. (2012). A data-driven model for software

reliability prediction. In IEEE International Conference on

Granular Computing.

[18]. Oral, A. D., & Bener, A. B. (2007, November). Defect

prediction for embedded software. In 22nd International

Symposium on Computer and Information Sciences, 2007.

ISCIS 2007 (pp. 1–6). New York: IEEE.

[19]. Singh, A., & Singh, R. (2013, March). Assuring

Software Quality using data mining methodology: A literature

study. In 2013 International Conference on Information

Systems and Computer Networks (ISCON) (pp. 108–113).

New York: IEEE.

[20]. Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul,

R. A. (2008). Empirical assessment of machine learning

based software defect prediction techniques. International

Journal on Artificial Intelligence Tools, 17(02), 389–400.

[21] Karpagavadivu.K, et.al. (2012), “A Survey of Different

Software Fault Prediction Using Data Mining Techniques

Methods”, International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET) Volume 1,

Issue 8, pp 1-3.

[22] Ahmet Okutan1 and Olcay Taner Yıldız, (2013), “A

Novel Regression Method for Software Defect Prediction

with Kernel Methods”, ICPMRA 2013 - International

Conference on Pattern Recognition Applications and

Methods, pp 216-221.

[23] Yajnaseni Dash, Sanjay Kumar Dubey, (2012), “ Quality

Prediction in Object Oriented System by Using ANN: A Brief

Survey”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2,

Issue 2,, pp.1-6.

[24] Ms. Puneet Jai Kaur, Ms.Pallavi, (2013), “Data Mining

Techniques for Software Defect Prediction”, International

Journal of Software and Web Sciences (IJSWS),International

Journal of Software and Web Sciences 3(1), pp. 54-57.

[25] Xiaoxing Yang, et.al. (2014), IEEE TRANSACTIONS

ON RELIABILITY, This article has been accepted for

inclusion in a future issue of this journal.

