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Abstract: Object detection, as of one the most 

fundamental and challenging problems in computer 

vision, has received great attention in recent years. Its 

development in the past two decades can be regarded as 

an epitome of computer vision history. If we think of 

today’s object detection as a technical aesthetics under the 

power of deep learning, then turning back the clock 20 

years we would witness the wisdom of cold weapon era. 

This paper extensively reviews 400+ papers of object 

detection in the light of its technical evolution, spanning 

over a quarter-century’s time. A number of topics have 

been covered in this paper, including the milestone 

detectors in history, detection datasets, metrics, 

fundamental building blocks of the detection system, 

speed up techniques, and the recent state of the art 

detection methods. This paper also reviews some 

important detection applications, such as pedestrian 

detection, face detection, text detection, etc, and makes an 

in-deep analysis of their challenges as well as technical 

improvements in recent years. 
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1. Introduction: 

Object detection is an important computer vision task that 

deals with detecting instances of visual objects of a certain 

class (such as humans, animals, or cars) in digital images. The 

objective of object detection is to develop computational 

models and techniques that provide one of the most basic 

pieces of information needed by computer vision 

applications: What objects are where? As one of the 

fundamental problems of computer vision, object detection 

forms the basis of many other computer vision tasks, such as 

instance segmentation [1–4], image captioning [5–7], object 

tracking [8], etc. From the application point of view, object 

detection can be grouped into two research topics “general 

object detection” and “detection applications”, where the 

former one aims to explore the methods of detecting different 

types of objects under a unified framework to simulate the 

human vision and cognition, and the later one refers to the 

detection under specific application scenarios, such as 

pedestrian detection, face detection, text detection, etc. In 

recent years, the rapid development of deep learning 

techniques [9] has brought new blood into object detection, 

leading to remarkable breakthroughs and pushing it forward 

to a research hot-spot with unprecedented attention. Object 

detection has now been widely used in many real-world 

applications, such as autonomous driving, robot vision, video 

surveillance, etc. Fig. 1 shows the growing number of 

publications that are associated with “object detection” over 

the past two decades. 

 

 
Fig 1. The increasing number of publications in object 

detection. 

 

2. Literature Review: 

Histogram of Oriented Gradients (HOG) feature descriptor 

was originally proposed in 2005 by N. Dalal and B. Triggs 

[12]. HOG can be considered as an important improvement 

of the scale-invariant feature transform [33, 34] and shape 

contexts [35] of its time. To balance the feature invariance 

(including translation, scale, illumination, etc) and the 

nonlinearity (on discriminating different objects categories), 

the HOG descriptor is designed to be computed on a dense 

grid of uniformly spaced cells and use overlapping local 

contrast normalization (on “blocks”) for improving accuracy. 

Although HOG can be used to detect a variety of object 

classes, it was motivated primarily by the problem of 

pedestrian detection. To detect objects of different sizes, the 

HOG detector rescales the input image for multiple times 

while keeping the size of a detection window unchanged. The 

HOG detector has long been an important foundation of many 

object detectors [13, 14, 36] and a large variety of computer 

vision applications for many years. 

The DPM follows the detection philosophy of “divide and 

conquer”, where the training can be simply considered as the 

learning of a proper way of decomposing an object, and the 

inference can be considered as an ensemble of detections on 

different object parts. For example, the problem of detecting 

a “car” can be considered as the detection of its window, body, 

and wheels. This part of the work, a.k.a. “star-model”, was 

completed by P. Felzenszwalb et al. [13]. Later on, R. 
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Girshick has further extended the star-model to the “mixture 

models” [14, 15, 37, 38] to deal with the objects in the real 

world under more significant variations. A typical DPM 

detector consists of a root-filter and a number of part-filters. 

Instead of manually specifying the configurations of the part 

filters (e.g., size and location), a weakly supervised learning 

method is developed in DPM where all configurations of part 

filters can be learned automatically as latent variables. R. 

Girshick has further formulated this process as a special case 

of Multi-Instance learning 

[39], and some other important techniques such as “hard 

negative mining”, “bounding box regression”, and “context 

priming” are also applied for improving detection accuracy. 

To speed up the detection, Girshick developed a technique for 

“compiling” detection 

models into a much faster one that implements a cascade 

architecture, which has achieved over 10 times acceleration 

without sacrificing any accuracy [14, 38]. 

As the performance of hand-crafted features became 

saturated, object detection has reached a plateau after 2010. 

R. Girshick says: “... progress has been slow during 2010-

2012, with small gains obtained by building ensemble 

systems and employing minor variants of successful 

methods”[38]. In 2012, the world saw the rebirth of 

convolutional neural networks [40]. As a deep convolutional 

network is able to learn robust and high-level feature 

representations of an image, a natural question is whether we 

can bring it to 

object detection? R. Girshick et al. took the lead to break the 

deadlocks in 2014 by proposing the Regions with CNN 

features (RCNN) for object detection [16]. Since then, object 

detection started to evolve at an unprecedented speed. In deep 

learning era, object detection can be grouped into two genres: 

“two-stage detection” and “one-stage detection”, where the 

former frames the detection as a “coarseto- fine” process 

while the later frames it as to “complete in one step”. 

 

In 2014, K. He et al. proposed Spatial Pyramid Pooling 

Networks (SPPNet) [17]. Previous CNN models require a 

fixed-size input, e.g., a 224x224 image for AlexNet [40]. The 

main contribution of SPPNet is the introduction of a Spatial 

Pyramid Pooling (SPP) layer, which enables a CNN to 

generate a fixed-length representation regardless of the size 

of image/region of interest without rescaling it. When using 

SPPNet for object detection, the feature maps can be 

computed from the entire image only once, and then 

fixedlength representations of arbitrary regions can be 

generated for training the detectors, which avoids repeatedly 

computing the convolutional features. SPPNet is more than 

20 times faster than R-CNN without sacrificing any detection 

accuracy (VOC07 mAP=59.2%). 

Although SPPNet has effectively improved the detection 

speed, there are still some drawbacks: first, the training is still 

multi-stage, second, SPPNet only fine-tunes its fully 

connected layers while simply ignores all previous layers. 

Later in the next year, Fast RCNN [18] was proposed and 

solved these problems. 

In 2015, R. Girshick proposed Fast RCNN detector [18], 

which is a further improvement of R-CNN and SPPNet [16, 

17]. Fast RCNN enables us to simultaneously train a detector 

and a bounding box regressor under the same network 

configurations. On VOC07 dataset, Fast RCNN increased the 

mAP from 58.5% (RCNN) to 70.0% while with a detection 

speed over 200 times faster than R-CNN. Although Fast-

RCNN successfully integrates the advantages of R-CNN and 

SPPNet, its detection speed is still limited by the proposal 

detection. Then, a question naturally arises: “can we generate 

object proposals with a CNN model?” Later, Faster R-CNN 

[19] has answered this question. 

In despite of its high speed and simplicity, the one-stage 

detectors have trailed the accuracy of two-stage detectors for 

years. T.-Y. Lin et al. have discovered the reasons behind and 

proposed RetinaNet in 2017 [23]. They claimed that the 

extreme foreground-background class imbalance 

encountered during training of dense detectors is the central 

cause. To this end, a new loss function named “focal loss” has 

been introduced in RetinaNet by reshaping the standard cross 

entropy loss so that detector will put more focus on hard, 

misclassified examples during training. Focal Loss enables 

the one-stage detectors to achieve comparable accuracy of 

two-stage detectors while maintaining very high detection 

speed. 

Building larger datasets with less bias is critical for 

developing advanced computer vision algorithms. In object 

detection, a number of well-known datasets and benchmarks 

have been released in the past 10 years, including the datasets 

of PASCAL VOC Challenges [10, 11] (e.g., VOC2007, 

VOC2012), ImageNet Large Scale Visual Recognition 

Challenge (e.g., ILSVRC2014) [12], MS-COCO Detection 

Challenge [53], etc. The statistics of these datasets are given 

some image examples of these datasets. Fig. 3 shows the 

improvements of detection accuracy on VOC07, VOC12 and 

MS-COCO datasets from 2008 to 2018. 

The PASCAL Visual Object Classes (VOC) Challenges1 

(from 2005 to 2012) [10, 11] was one of the most important 

competition in early computer vision community. There are 

multiple tasks in PASCAL VOC, including image 

classification, object detection, semantic segmentation and 

action detection. Two versions of Pascal-VOC are mostly 

used in object detection: VOC07 and VOC12, where the 

former consists of 5k tr. images + 12k annotated objects, and 

the latter consists of 11k tr. images + 27k annotated objects. 

20 classes of objects that are common in life are annotated in 

these two datasets (Person: person; Animal: bird, cat, cow, 

dog, horse, sheep; Vehicle: aeroplane, bicycle, boat, bus, car, 

motor-bike, train; Indoor: bottle, chair, dining table, potted 

plant, sofa, tv/monitor). In recent years, as some larger 

datasets like ILSVRC and MS-COCO (to be introduced) has 

been released, the VOC has gradually fallen out of fashion 

and has now become a test-bed for most new detectors. 

In the early time’s detection community, there is no widely 

accepted evaluation criteria on detection performance. For 

example, in the early research of pedestrian detection [12], 

the “miss rate vs. false positives per-window (FPPW)” was 

usually used as a metric. However, the perwindow 

measurement (FPPW) can be flawed and fails to predict full 

image performance in certain cases [19]. 

In 2009, the Caltech pedestrian detection benchmark was 

created [19, 20] and since then, the evaluation metric has 

changed from per-window (FPPW) to false positives 

perimage (FPPI). 
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In recent years, the most frequently used evaluation for object 

detection is “Average Precision (AP)”, which was originally 

introduced in VOC2007. AP is defined as the average 

detection precision under different recalls, and is usually 

evaluated in a category specific manner. To compare 

performance over all object categories, the mean AP (mAP) 

averaged over all object categories is usually used as the final 

metric of performance. To measure the object localization 

accuracy, the Intersection over Union (IoU) is used to check 

whether the IoU between the predicted box and the ground 

truth box is greater than a predefined threshold, say, 0.5. If 

yes, the object will be identified as “successfully detected”, 

otherwise will be identified as “missed”. The 0.5- IoU based 

mAP has then become the de facto metric for object detection 

problems for years. 

After 2014, due to the popularity of MS-COCO datasets, 

researchers started to pay more attention to the accuracy of 

the bounding box location. Instead of using a fixed IoU 

threshold, MS-COCO AP is averaged over multiple IoU 

thresholds between 0.5 (coarse localization) and 0.95 (perfect 

localization). This change of the metric has encouraged more 

accurate object localization and may be of great importance 

for some real-world applications (e.g., imagine there is a 

robot arm trying to grasp a spanner). Recently, there are some 

further developments of the evaluation in the Open Images 

dataset, e.g., by considering the group-of boxes and the non-

exhaustive image-level category hierarchies. Some 

researchers also have proposed some alternative metrics, e.g., 

“localization recall precision” [34]. Despite the recent 

changes, the VOC/COCO-based mAP is still the most 

frequently used evaluation metric for object detection. 

Y. LeCun et al. have 

made great contributions at that time. Due to limitations in 

computing resources, CNN models at the time were much 

smaller and shallower than those of today. Despite this, the 

computational efficiency was still considered as one of the 

tough nuts to crack in early times’s CNN based detection 

models. Y. LeCun et al. have made a series of improvements 

like “shared-weight replicated neural network” [36] and 

“space displacement network” [37] to reduce the 

computationsby extending each layer of the convolutional 

network  so as to cover the entire input image. In this way, the 

feature of any location of the entire image can be extracted by 

taking only one time of forward propagation of the network. 

This can be considered as the prototype of today’s fully 

convolutional networks (FCN) [10, 11], which was proposed 

almost 20 years later. CNN also has been applied to other 

tasks such as face detection [12, 13] and hand tracking [14] 

of its time. 

Early detection models like VJ detector and HOG detector 

were specifically designed to detect objects with a “fixed 

aspect ratio” (e.g., faces and upright pedestrians) by simply 

building the feature pyramid and sliding fixed size detection 

window on it. The detection of “various aspect ratios” was 

not considered at that time. To detect objects with a more 

complex appearance like those in PASCAL VOC, R. Girshick 

et al. began to seek better solutions outside the feature 

pyramid. The “mixture model” [15] was one of 

the best solutions at that time, by training multiple models to 

detect objects with different aspect ratios. Apart from this, 

exemplar-based detection [36, 115] provided another solution 

by training individual models for every object instance 

(exemplar) of the training set. 

As objects in the modern datasets (e.g., MS-COCO) become 

more diversified, the mixture model or exemplarbased 

methods inevitably lead to more miscellaneous detection 

models. A question then naturally arises: is there a unified 

multi-scale approach to detect objects of different aspect 

ratios? The introduction of “object proposals” (to be 

introduced) has answered this question. 

 

In recent years, as the increase of GPU’s computing power, 

the way people deal with multi-scale detection has become 

more and more straight forward and brute-force. The idea of 

using the deep regression to solve multi-scale problems is 

very simple, i.e., to directly predict the coordinates of a 

bounding box based on the deep learning features [20]. The 

advantage of this approach is that it is simple and easy to 

implement while the disadvantage is the localization may not 

be accurate enough especially for some small objects. “Multi-

reference detection” (to be introduced) has latter solved this 

problem. 

Most of the early detection methods such as VJ detector and 

HOG detector do not use BB regression, and usually directly 

consider the sliding window as the detection result. To obtain 

accurate locations of an object, researchers have no choice but 

to build very dense pyramid and slide the detector densely on 

each location. 

The first time that BB regression was introduced to an object 

detection system was in DPM [15]. The BB regression at that 

time usually acted as a post-processing block, thus it is 

optional. As the goal in the PASCAL VOC is to predict single 

bounding box for each object, the simplest way for a DPM to 

generate final detection should be directly using its root filter 

locations. Later, R. Girshick et al. introduced a more complex 

way to predict a bounding box based on the complete 

configuration of an object hypothesis and 

formulate this process as a linear least-squares regression 

problem [15]. This method yields noticeable improvements 

of the detection under PASCAL criteria. 

Local context refers to the visual information in the area that 

surrounds the object to detect. It has long been acknowledged 

that local context helps improve object detection. At early 

2000s, Sinha and Torralba [139] found that inclusion of local 

contextual regions such as the facial bounding contour 

substantially improves face detection performance. Dalal and 

Triggs also found that incorporating a small amount of 

background information improves the accuracy of pedestrian 

detection [12]. Recent deep learning based detectors can also 

be improved with local context by simply enlarging the 

networks’ receptive field or the size of object proposals. 

Global context exploits scene configuration as an additional 

source of information for object detection. For early time’s 

object detectors, a common way of integrating global context 

is to integrate a statistical summary of the elements that 

comprise the scene, like Gist [10]. For modern deep learning 

based detectors, there are two methods to integrate global 

context. The first way is to take advantage of large receptive 

field (even larger than the input image) [20] or global pooling 

operation of a CNN feature. The second way is to think of the 

global context as a kind of sequential information and to learn 

it with the recurrent neural networks [14, 19]. 
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3. Conclusion: 

Remarkable achievements have been made in object 

detection over the past 20 years. This paper not only 

extensively reviews some milestone detectors (e.g. VJ 

detector, HOG detector, DPM, Faster-RCNN, YOLO, SSD, 

etc), key technologies, speed up methods, detection 

applications, datasets, and metrics in its 20 years of history, 

but also discusses the challenges currently met by the 

community, and how these detectors can be further extended 

and improved. Recent deep learning based detectors are 

becoming more and more sophisticated and heavily relies on 

experiences. A future direction is to reduce human 

intervention when designing the detection model (e.g., how 

to design the engine and how to set anchor boxes) by using 

neural architecture search. AutoML could be the future of 

object detection. 
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