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Abstract: The prediction of Parkinson's disease has been a 

focal point for researchers for over a decade. The 

Parkinson's disease dataset is readily available on machine 

learning repository websites. Researchers have employed 

various techniques including data mining, machine 

learning, and deep learning to develop prediction systems 

aimed at early detection of Parkinson's disease, crucial for 

managing a disease whose healthcare costs are often 

prohibitive in developing and underdeveloped countries. In 

our proposed study, we will preprocess the dataset through 

exploratory data analysis and build a prediction system 

using optimized machine learning models such as k-nearest 

neighbors, logistic regression, decision tree classifier, and 

random forest classifier. Each algorithm will be applied to 

predict outcomes, followed by a comprehensive 

multidimensional analysis to identify the most suitable 

model. The dataset comprises data from a study involving 

31 individuals, among whom 23 are diagnosed with 

Parkinson's disease. 
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1. Introduction: 

Parkinson's disease (PD) is a chronic and progressive 

neurodegenerative disorder characterized by the loss of 

nigrostriatal dopaminergic pathways [1]. Its prevalence in the 

general population ranges from 0.1% to 0.3%, with a notable 

increase among individuals aged over 65 years [2]. Key clinical 

features of PD include tremor, rigidity, akinesia (such as 

bradykinesia and hypokinesia), and postural instability. 

Alongside these motor symptoms, PD commonly presents with 

a spectrum of non-motor signs and symptoms encompassing 

autonomic dysfunctions (such as hyperhidrosis, orthostatic 

hypotension, and sexual-urinary dysfunction), sleep 

disturbances, neuropsychiatric issues (including apathy, 

fatigue, depression, anxiety, dementia, and psychosis), sensory 

problems (like internal tremor, restless leg syndrome, 

numbness, paresthesia, visual disturbances), and pain [4-7]. 

Pain affects approximately 30% to 50% of PD patients and can 

increase to 68% to 85% when all types of pain are considered 

[8]. It can manifest at any stage of the disease, sometimes 

preceding formal diagnosis [9]. Despite ongoing research, 

consensus on the classification and underlying mechanisms of 

pain in PD remains elusive. This review aims to explore 

existing data on potential mechanisms, classification, 

assessment, and risk factors associated with pain in individuals 

with PD. 

 

Parkinson's disease is increasingly recognized as a significant 

degenerative disorder of the central nervous system, profoundly 

impacting the quality of life for millions of older adults globally 

[1]. The progression of PD symptoms varies widely among 

individuals due to the disease's heterogeneity. Patients may 

exhibit resting tremors, limb rigidity, and difficulties with gait 

and balance. PD symptoms are broadly categorized into motor 

symptoms, which are movement-related, and non-motor 

symptoms that include depression, sleep disorders, anosmia 

(loss of sense of smell), and cognitive impairment. Non-motor 

symptoms often impose greater burden than motor symptoms. 

According to the Centers for Disease Control and Prevention 

(CDC), PD complications rank as the 14th leading cause of 

death in the United States. Despite extensive research, the 

precise cause of PD remains largely unknown. The economic 

impact of PD, encompassing direct medical costs, social 

security expenditures, and lost productivity, is estimated to 

exceed $52 billion annually in the United States alone. 

Globally, more than 10 million people are affected by PD. Early 

detection is crucial as it enables prompt treatment initiation and 

significant symptom alleviation [2]. Detecting PD early is 

pivotal in slowing disease progression and potentially enabling 

access to disease-modifying therapies when available. 

 

2. Literature Review: 

Pain, characterized as a profound and tangible experience 

linked to actual or potential injury, is defined by the 

International Association for the Study of Pain (IASP) [10]. 

Nociception, the process initiating pain, involves several 

anatomical structures. Nociceptors, including thinly myelinated 

Ad fibers responsive to mechanical and thermal stimuli, and 

unmyelinated C fibers (polymodal) sensitive to mechanical, 

thermal, or chemical stimuli, transmit signals to dorsal horn 

neurons of the spinal cord. Lamina II, known as the substantia 

gelatinosa, plays a crucial role in regulating these pain signals 

[10,11]. This region acts as a transitional gateway, modulating 

transmission to lamina V neurons, which further relay sensory 

inputs to the brain. The substantia gelatinosa inhibits these 

neurons, reducing their inhibitory effect on ascending sensory 

pathways. Consequently, sensory transmission is enhanced, 

aligning with the gate control theory at the spinal level [12]. 
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Two phylogenetically distinct systems, the medial and lateral 

pain pathways, relay pain signals to higher brain centers. The 

medial system comprises fibers such as paleospinothalamic, 

spinomesencephalic, spinoreticular, spinoparabrachial, 

hypothalamic, and spinothalamic tracts. These fibers ascend 

and descend to various brain structures, including the 

parabrachial nucleus, locus coeruleus (reticular formation), 

periaqueductal gray (mesencephalon), thalamic nuclei 

(intralaminar and medial), insula, parietal operculum, 

secondary somatosensory cortex, amygdala, and hippocampus. 

 

3. Methodology: 

This section focuses on detailing the dataset utilized and the 

methodologies employed for early prediction of Parkinson’s 

disease in patients. The chosen approaches aim to differentiate 

Parkinson’s disease patients from healthy individuals. The 

strategy involves conducting a comparative analysis of various 

machine learning techniques by applying different models to 

the dataset and determining the optimal technique based on 

performance metrics such as accuracy, ROC (Receiver 

Operating Characteristic), AAE (Average Absolute Error), and 

ARE (Average Relative Error). Additionally, the study extends 

its scope by integrating the Boruta feature selection technique. 

Algorithm: 

Step1: Data Gathering 

Step 2: Data preparation 

Step 3: Model Selection 

Step 4: Training 

Step 5: Evaluation 

Step 6: Prediction 

 

Random Forest 

Random Forest is a versatile machine learning method utilized 

for both classification and regression tasks. It belongs to the 

ensemble methods category, where a collection of weak models 

collectively forms a robust predictive model. In a random 

forest, multiple trees are generated, and each tree provides a 

classification. The final classification is determined by 

aggregating the votes from all trees in the forest, selecting the 

class with the highest number of votes. 

 

Random Forest Prediction Pseudo code: 

Here's a revised version: 

1. It uses the features of the test set to build decision trees 

for predicting outcomes, saving these predictions. 

2. Votes are computed for each predicted outcome. 

3. The final prediction is based on the highest-voted 

outcome among all predictions. 

 

4. Result and discussion: 

The data correlation is determined using the Pearson coefficient 

technique. Each feature in the feature set is correlated with the 

status label. In the correlation table depicted in Figure 4.5, it is 

evident that features such as sex, test time, and those related to 

Shimmer do not exhibit strong correlations with the status 

column. Utilizing these columns could result in an undertrained 

machine learning model. Figure 2 displays a heatmap 

illustrating these correlations. 

 

 
Fig. 1: Correlation table. 

 

 
Fig. 2: heat map of the Correlation. 

 

The dataset is divided into a feature set and labels, followed by 

splitting into an 80:20 ratio for training and testing. Standard 

scaling is applied using standard scalers, which normalizes data 

based on its standard deviation. Training data is utilized to train 

multiple machine learning models such as K-neighbors, 

Logistic Regression, Decision Tree Classifier, and Random 

Forest Classifier. These models undergo hyperparameter tuning 

using GridSearchCV before training. For instance, the KNN 

classifier is tuned for the 'n_neighbors' parameter, typically set 

to 5 by default, achieving maximum accuracy with a value of 7. 

Figure 3 illustrates the resulting prediction accuracies of both 

tuned and non-tuned models. 
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Fig 3: the prediction accuracy of KNN. 

 

 
Fig. 4: the prediction accuracy of Logistic regression. 

 

The logistic regression model undergoes hyperparameter tuning 

for the learning rate (C), penalty, and maximum iterations to 

optimize the theta parameters crucial for building effective 

logistic regression models. After hyperparameter tuning, the 

values are set to C = 1000, penalty = l2, and maximum iterations 

= 120000. 

 

5. Conclusion: 

Parkinson's disease directly impacts the central nervous system 

and primarily affects patients' motor functions. The disease is 

primarily caused by a reduction in dopamine levels due to 

damage to nerve cells. Key symptoms include stiffness, 

impaired movement, and tremors. It is a progressive disease 

with no cure, managed through ongoing medical care. Machine 

learning models were applied to a dataset after performing 

exploratory data analysis and preprocessing steps such as 

scaling and feature extraction. The models underwent 

hyperparameter tuning using the gridsearchcv module. Based 

on the results, the random forest model emerged as the most 

effective for predicting Parkinson's disease. 
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