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Abstract- This paper describes a unique way for ensuring 

mutual exclusion in distributed systems that makes use of an 

n-node network. The suggested approach communicates 

between nodes via message passing. This technique divides 

the distributed system into smaller sub-systems, each with 

about √m nodes (m being the smallest perfect square bigger 

than or equal to n). If n is already a perfect square, no 

changes are done. The method employs a token-based 

strategy in which, in the best scenario, a node obtains the 

token with just two messages, while in the worst case, the 

token is received after n messages. 
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1. INTRODUCTION 

 

The solution to the problem of the mutual exclusion in 

distributed is to implement a protocol that is implemented 

by processes inside the distributed system and is solely 

based on message forwarding. This enables one or more 

processes to access shared resources while performing 

private activities. Implementing mutual exclusion on 

shared items in centrally managed systems is quite 

simple, and is frequently accomplished via semaphores or 

monitors. However, in a distributed system, the lack of a 

global or centralized controller considerably complicates 

the solution because nodes may only interact via message 

exchanges. 

A distributed mutual exclusion method requires a system 

that notifies all other nodes that a process has already 

entered the crucial region, prohibiting them from doing so 

at the same time. There are several approaches available 

for solving this. There is a risk of congestion with a 

centralized system since a single administrator is in the 

position of controlling the whole network; yet, the 

implementation is straightforward.  

In a system distributed with network, complexity of 

message is large since no node knows if the token is 

available. As a result, a node desiring to reach the crucial 

region must send request messages to all nodes in the 

system to locate the token. Despite the high system load, 

the suggested method stays well-balanced. The remainder 

of this article is organized as: Section 2nd covers relevant 

work, and Section 3rd describes the algorithm's basis, 

which is following a formal explanation. Finally, Section 

4 discusses the conclusions. 

 
2. LITERATURE REVIEW 

 

Distributed mutual exclusion methods [1], [2] use a 

unique token, also defined by the PRIVILEGE message 

[2], that is sharing among the sites. Possession of this 

token authorizes a site for entering and executing its 

crucial section (CS). The token's sole existence ensures 

that mutual exclusion is maintained across the distributed 

system. 

The Suzuki-Kasami method, introduced in 1985, requires 

0 to N messages for a node for entering the critical section 

(CS) [2]. A node with the token can access the CS. 

Because only one node at a time has the privilege, when a 

node asks access to the CS, it sends a message to all other 

nodes. If the token is idle at a certain site, that site 

delivers it to the requesting node. The site holding the 

token can enter the CS several times until another site do 

not acquires it. 

The message that is in request state is formatted as 

REQUEST(j,n), indicating that jth site  is seeking the nth 

CS. Each node keeps a size N array as RN to store the 

most recent sequence number received from each other 

node. The PRIVILEGE message is formatted as 

PRIVILEGE (Q, LN), with Q representing a nodes queue 

seeking access to the CS and LN representing an array of 

size N. LN[j] denotes the most recent CS processed by jth 

node. If RN[j] = LN[j]+1, it indicates that jth node issued a 

request for a new sequence of CSs, and the node with the 

permission to add this to the queue sends the 

PRIVILEGE(LN,Q) to the node that requested the CS. 

The messages number under one CS entrance is (N-1) 

REQUEST messages + 1 PRIVILEGE message, for a 

total of N messages, or 0 if the node with the token 

wishes for entering in respective CS. 

Kerry Raymond created an algorithm in 1989 that 

organizes nodes in an unrooted tree structure [3] and 

transmits large amount of messages through the 

undirected edges of tree. Every node is aware of its near 

neighbours. To reach the CS, a node must first receive the 

PRIVILEGE message, much like with other token-based 

algorithms. At each node, a HOLDER named variable 
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referring to a node on the PRIVILEGE. If a node has the 

PRIVILEGE, the HOLDER is referring to itself. If a non-

privileged node is asking access to the CS, it is creating a 

request and storing it under the local queue known as 

REQUESTQ. If it has already not sent a message toward 

the node indicated by the HOLDER, it prefers of sending 

message through a path by the token holder. Upon 

instance of request message receiving, nodes perform 

forwarding it through a path by token holder, but prior to 

this, the request is added to local REQUESTQ. On 

reaching of request to the node that possess PRIVILEGE, 

and if that node is currently not performing its critical 

section, it is transmitting the PRIVILEGE to the node that 

has sent request. When a node receives the PRIVILEGE, 

it inspects its queue. If its own ID is at the top, it is 

executing the CS; otherwise, it is sending the 

PRIVILEGE towards the node with the ID at the head of 

the queue and modifies respective HOLDER variable to 

pointing towards that node. The messages size in number 

necessary to access the CS might range from 0 to 2D, 

where D representing tree's diameter. However, under full 

load, this may be reducing to a maximum of 4 messages 

per CS executing in a correctly constructed tree, or to just 

two messages if the system is arranged as a chain. 

Mukesh Singhal presented an algorithm in 1989 [4], 

which use state information to describe the 

collective mutual exclusion processes states throughout of 

the system. Status updates is tracked by each site for 

another sites and using that information for determination 

of subset of sites is most likely to have the token. As a 

result, the amount of exchanged messages to enter the 

CS is fluctuating at random value in between 0 and n (n 

here represents number of system sites). Sites employing 

sequence numbers for distinguishing in outdated and 

current requests of token. Every site keeping a counter, & 

when it has to run its CS, it increases the count and 

providing the value after modification of number of the 

sequence in its messages of token request. Each site 

additionally keeping the track of the largest value of 

sequence number and the state information that is updates 

most recently for all other sites. By comparison the 

number of sequence of a received request to the sender's 

most recent known sequence number, the token is 

provided to the site having sequence number with the 

lowest value. 

Sebastian Cantarell et al. (2001) suggest a system with 

two layers: the application layer (as topmost layer) and 

the GME layer (as bottom most layer). There are two 

sorts of messages used to establish the interaction 

between these layers: Requesting & Granting Session [6]. 

When the needs to access to a session are rooted by 

application layer, named as ‘Session X’, the process sends 

a Session(X) Request message to the GME layer. The 

GME layer then authorizes access to Session(X) by 

returning a Grant-Session message to application layer. 

These messages have a maximum size of 2 × log(m + 1) 

bits. In the worst-case situation, each resource request 

may create O(n²) messages, whereas as per best-case 

scenario, it may need none of the messages. 

Quazi Kabir Ehsanul & Nakazato Hidenori (2006) 

described a unique approach based on token for mutual 

exclusion in group for systems of distributed networks [5, 

6]. This protocol is using a single token for allowing 

many processes for access under the CS area of a session 

under shared state. Concurrency is a major protocol 

component; both throughput and time of wait may be 

modified by changing the length of a session declaration. 

The least amount of messages numbers necessary for 

entering the CS is zero, and the highest is (n + 2), where n 

is the total number of system processes. 

 

3. PROPOSED APPROACH 

 

3.1 Network Model 

 

The network is believed to be completely linked, with no 

malfunctioning processors. The network's n nodes are 

separated into m sets logically, each of which has m 

nodes. These sets are known as local groups (LGs). The 

nodes in each LG are completely linked and may interact 

directly to reach the CS. Single node from every LG is 

chosen to serve role of local coordinator (LC). The 

LC under all LGs establishes a new group known as the 

global group (GG). One node in this GG is chosen to act 

as the Global Coordinator (GC). All the nodes in the 

GG has the ability to interact with all other nodes in the 

GG as well as all nodes in its own LG [7, 8]. 

 

3.2 Basis of the Algorithm 

 

The suggested technique uses a token-based approach, 

with just one token available in the network. When a node 

obtains a token, it gains access to the CS. 

1. Every node in the group is aware of the specified LC 

in each LG. A request message is sent to the LC by a 

node in the local group requesting access to the 

crucial section. 

2. The LC awaits the token's availability inside the local 

group after receiving a token request. The LC obtains 

the token from the process that is presently holding it 

inside the group, and if it is accessible locally, it 

transmits it to the requesting node. 

3. The node gives the token back to the local group's LC 

after finishing its CS operation. 

4. The LC sends the request to the nodes in the GG if 

the token is not accessible locally. 

5. By transmitting the token request, each LC in the 

GG verifies if the token is available inside their own 

LG. To verify its possession, the token's node replies 

to its LC. 
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6. The idle token that is holding by the LC sends it to 

LC that request for it, & LC that is requesting token 

then passes it to the requesting node. 

7. The node gives the token back to the local group's LC 

after finishing the CS process. 

8. To determine whether there are any pending requests, 

the LC with the idle token looks through its request 

queue. 

9. The LC sends the token to the appropriate node if it 

detects a local request. The token is sent to the LC 

making the request if it comes from another LC. 

10. Only the LC of the desired node receives the request 

if the requirement of a node is wanted by any other 

node. 

11. Proving the equality higher for any homomorphism 

token f by showing that for elements a, b, c, 

g(a,b,c)=g(a).g(b).g(c) and g(a)-1= g(a-1). 

12. Searching the all probable homeomorphisms from 

F2 to Z3×Z3 and from Z to Z. 

 

The technique of selecting the locations of a group's 

generators and then "extending" the homomorphism to the 

remainder of the group is frequently very helpful, but it is 

only applicable when the generators' images satisfy every 

relation between the generators [9, 10]. 

If Z3 is generated by R120 than for defining a 

homomorphism f:Z3→Z by letting f(R120)=1, to send a 

generator towards another generator. Does it is extending 

towards homomorphism? Which function does relate 

R120 for satisfying that 1∈Z? There are many 

homeomorphisms from F2 to Z×Z. Take for instance 

f(a)=(1,0) and f(b)=(0,2).  

To find the solution, all the homomorphisms from Z×Z to 

F2 are checked to find that what do they have in common? 

           

While (true) 

                          Do 

                   {    Selection of group g belongs to G; 

                         Requesting for g : - Entry protocol. 

                               Critical Section(CS) 

                               Releasing : Protocol Exit. 

                          } 

Let f:G→H is showing a type of homomorphism in both 

groups, of an identity of G denoting eG & identity of H 

denoting by eH. Showing that f(eG)=eH, that is, identity is 

send towards identity using a homomorphism. That is 

obvious that the application of the fact that e=ee and the 

defining homomorphism’s property [11]. 

On consideration of a mapping f: Z9→Z3 described under 

f(Rm)=R3m (recall that if Rm is under rotation of direction 

in counterclockwise of degree m). Is this a 

homomorphism? Find the homomorphism from Z6 to Z3. 

Is the mapping f:Z6→Z5 given that f(Rm)=R0 (the identity) 

a homomorphism? Find the homomorphism of F2 to Z×Z 

 

4. CONCLUSION  

The paper introduces a mutual exclusion scheme that uses 

a token-based algorithm and is useful in distributed 

systems applications. Performance improvement is 

demonstrated in comparison to existing mutual exclusion 

methods that use a token-based algorithm. The proposed 

approach successfully reduced message complexity to √n 

in the worst case and as low as 2 in the best case. 

                           

  Figure 1: Comparison of complexity of Message of n1/2  

in between two case  
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