
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

Advanced Approach for Achieving Mutual

Exclusion in Distributed Network

Om Awasthi, RKDF University, Bhopal, Madhya Pradesh, omawasthi.rishi@gmail.com

Dr. Santosh Kumar Shukla, BBDITM, Lucknow, Uttar Pradesh

Dr. Devendra Kumar, BNCET Engineering College Lucknow

Abstract- This paper describes a unique way for ensuring

mutual exclusion in distributed systems that makes use of an

n-node network. The suggested approach communicates

between nodes via message passing. This technique divides

the distributed system into smaller sub-systems, each with

about √m nodes (m being the smallest perfect square bigger

than or equal to n). If n is already a perfect square, no

changes are done. The method employs a token-based

strategy in which, in the best scenario, a node obtains the

token with just two messages, while in the worst case, the

token is received after n messages.

Keywords: Computer network, Distributed algorithm,

Data forwarding, Message complexity.

1. INTRODUCTION

The solution to the problem of the mutual exclusion in

distributed is to implement a protocol that is implemented

by processes inside the distributed system and is solely

based on message forwarding. This enables one or more

processes to access shared resources while performing

private activities. Implementing mutual exclusion on

shared items in centrally managed systems is quite

simple, and is frequently accomplished via semaphores or

monitors. However, in a distributed system, the lack of a

global or centralized controller considerably complicates

the solution because nodes may only interact via message

exchanges.

A distributed mutual exclusion method requires a system

that notifies all other nodes that a process has already

entered the crucial region, prohibiting them from doing so

at the same time. There are several approaches available

for solving this. There is a risk of congestion with a

centralized system since a single administrator is in the

position of controlling the whole network; yet, the

implementation is straightforward.

In a system distributed with network, complexity of

message is large since no node knows if the token is

available. As a result, a node desiring to reach the crucial

region must send request messages to all nodes in the

system to locate the token. Despite the high system load,

the suggested method stays well-balanced. The remainder

of this article is organized as: Section 2nd covers relevant

work, and Section 3rd describes the algorithm's basis,

which is following a formal explanation. Finally, Section

4 discusses the conclusions.

2. LITERATURE REVIEW

Distributed mutual exclusion methods [1], [2] use a

unique token, also defined by the PRIVILEGE message

[2], that is sharing among the sites. Possession of this

token authorizes a site for entering and executing its

crucial section (CS). The token's sole existence ensures

that mutual exclusion is maintained across the distributed

system.

The Suzuki-Kasami method, introduced in 1985, requires

0 to N messages for a node for entering the critical section

(CS) [2]. A node with the token can access the CS.

Because only one node at a time has the privilege, when a

node asks access to the CS, it sends a message to all other

nodes. If the token is idle at a certain site, that site

delivers it to the requesting node. The site holding the

token can enter the CS several times until another site do

not acquires it.

The message that is in request state is formatted as

REQUEST(j,n), indicating that jth site is seeking the nth

CS. Each node keeps a size N array as RN to store the

most recent sequence number received from each other

node. The PRIVILEGE message is formatted as

PRIVILEGE (Q, LN), with Q representing a nodes queue

seeking access to the CS and LN representing an array of

size N. LN[j] denotes the most recent CS processed by jth

node. If RN[j] = LN[j]+1, it indicates that jth node issued a

request for a new sequence of CSs, and the node with the

permission to add this to the queue sends the

PRIVILEGE(LN,Q) to the node that requested the CS.

The messages number under one CS entrance is (N-1)

REQUEST messages + 1 PRIVILEGE message, for a

total of N messages, or 0 if the node with the token

wishes for entering in respective CS.

Kerry Raymond created an algorithm in 1989 that

organizes nodes in an unrooted tree structure [3] and

transmits large amount of messages through the

undirected edges of tree. Every node is aware of its near

neighbours. To reach the CS, a node must first receive the

PRIVILEGE message, much like with other token-based

algorithms. At each node, a HOLDER named variable

mailto:omawasthi.rishi@gmail.com

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

referring to a node on the PRIVILEGE. If a node has the

PRIVILEGE, the HOLDER is referring to itself. If a non-

privileged node is asking access to the CS, it is creating a

request and storing it under the local queue known as

REQUESTQ. If it has already not sent a message toward

the node indicated by the HOLDER, it prefers of sending

message through a path by the token holder. Upon

instance of request message receiving, nodes perform

forwarding it through a path by token holder, but prior to

this, the request is added to local REQUESTQ. On

reaching of request to the node that possess PRIVILEGE,

and if that node is currently not performing its critical

section, it is transmitting the PRIVILEGE to the node that

has sent request. When a node receives the PRIVILEGE,

it inspects its queue. If its own ID is at the top, it is

executing the CS; otherwise, it is sending the

PRIVILEGE towards the node with the ID at the head of

the queue and modifies respective HOLDER variable to

pointing towards that node. The messages size in number

necessary to access the CS might range from 0 to 2D,

where D representing tree's diameter. However, under full

load, this may be reducing to a maximum of 4 messages

per CS executing in a correctly constructed tree, or to just

two messages if the system is arranged as a chain.

Mukesh Singhal presented an algorithm in 1989 [4],

which use state information to describe the

collective mutual exclusion processes states throughout of

the system. Status updates is tracked by each site for

another sites and using that information for determination

of subset of sites is most likely to have the token. As a

result, the amount of exchanged messages to enter the

CS is fluctuating at random value in between 0 and n (n

here represents number of system sites). Sites employing

sequence numbers for distinguishing in outdated and

current requests of token. Every site keeping a counter, &

when it has to run its CS, it increases the count and

providing the value after modification of number of the

sequence in its messages of token request. Each site

additionally keeping the track of the largest value of

sequence number and the state information that is updates

most recently for all other sites. By comparison the

number of sequence of a received request to the sender's

most recent known sequence number, the token is

provided to the site having sequence number with the

lowest value.

Sebastian Cantarell et al. (2001) suggest a system with

two layers: the application layer (as topmost layer) and

the GME layer (as bottom most layer). There are two

sorts of messages used to establish the interaction

between these layers: Requesting & Granting Session [6].

When the needs to access to a session are rooted by

application layer, named as ‘Session X’, the process sends

a Session(X) Request message to the GME layer. The

GME layer then authorizes access to Session(X) by

returning a Grant-Session message to application layer.

These messages have a maximum size of 2 × log(m + 1)

bits. In the worst-case situation, each resource request

may create O(n²) messages, whereas as per best-case

scenario, it may need none of the messages.

Quazi Kabir Ehsanul & Nakazato Hidenori (2006)

described a unique approach based on token for mutual

exclusion in group for systems of distributed networks [5,

6]. This protocol is using a single token for allowing

many processes for access under the CS area of a session

under shared state. Concurrency is a major protocol

component; both throughput and time of wait may be

modified by changing the length of a session declaration.

The least amount of messages numbers necessary for

entering the CS is zero, and the highest is (n + 2), where n

is the total number of system processes.

3. PROPOSED APPROACH

3.1 Network Model

The network is believed to be completely linked, with no

malfunctioning processors. The network's n nodes are

separated into m sets logically, each of which has m

nodes. These sets are known as local groups (LGs). The

nodes in each LG are completely linked and may interact

directly to reach the CS. Single node from every LG is

chosen to serve role of local coordinator (LC). The

LC under all LGs establishes a new group known as the

global group (GG). One node in this GG is chosen to act

as the Global Coordinator (GC). All the nodes in the

GG has the ability to interact with all other nodes in the

GG as well as all nodes in its own LG [7, 8].

3.2 Basis of the Algorithm

The suggested technique uses a token-based approach,

with just one token available in the network. When a node

obtains a token, it gains access to the CS.

1. Every node in the group is aware of the specified LC

in each LG. A request message is sent to the LC by a

node in the local group requesting access to the

crucial section.

2. The LC awaits the token's availability inside the local

group after receiving a token request. The LC obtains

the token from the process that is presently holding it

inside the group, and if it is accessible locally, it

transmits it to the requesting node.

3. The node gives the token back to the local group's LC

after finishing its CS operation.

4. The LC sends the request to the nodes in the GG if

the token is not accessible locally.

5. By transmitting the token request, each LC in the

GG verifies if the token is available inside their own

LG. To verify its possession, the token's node replies

to its LC.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

6. The idle token that is holding by the LC sends it to

LC that request for it, & LC that is requesting token

then passes it to the requesting node.

7. The node gives the token back to the local group's LC

after finishing the CS process.

8. To determine whether there are any pending requests,

the LC with the idle token looks through its request

queue.

9. The LC sends the token to the appropriate node if it

detects a local request. The token is sent to the LC

making the request if it comes from another LC.

10. Only the LC of the desired node receives the request

if the requirement of a node is wanted by any other

node.

11. Proving the equality higher for any homomorphism

token f by showing that for elements a, b, c,

g(a,b,c)=g(a).g(b).g(c) and g(a)-1= g(a-1).

12. Searching the all probable homeomorphisms from

F2 to Z3×Z3 and from Z to Z.

The technique of selecting the locations of a group's

generators and then "extending" the homomorphism to the

remainder of the group is frequently very helpful, but it is

only applicable when the generators' images satisfy every

relation between the generators [9, 10].

If Z3 is generated by R120 than for defining a

homomorphism f:Z3→Z by letting f(R120)=1, to send a

generator towards another generator. Does it is extending

towards homomorphism? Which function does relate

R120 for satisfying that 1∈Z? There are many

homeomorphisms from F2 to Z×Z. Take for instance

f(a)=(1,0) and f(b)=(0,2).

To find the solution, all the homomorphisms from Z×Z to

F2 are checked to find that what do they have in common?

While (true)

 Do

 { Selection of group g belongs to G;

 Requesting for g : - Entry protocol.

 Critical Section(CS)

 Releasing : Protocol Exit.

 }

Let f:G→H is showing a type of homomorphism in both

groups, of an identity of G denoting eG & identity of H

denoting by eH. Showing that f(eG)=eH, that is, identity is

send towards identity using a homomorphism. That is

obvious that the application of the fact that e=ee and the

defining homomorphism’s property [11].

On consideration of a mapping f: Z9→Z3 described under

f(Rm)=R3m (recall that if Rm is under rotation of direction

in counterclockwise of degree m). Is this a

homomorphism? Find the homomorphism from Z6 to Z3.

Is the mapping f:Z6→Z5 given that f(Rm)=R0 (the identity)

a homomorphism? Find the homomorphism of F2 to Z×Z

4. CONCLUSION

The paper introduces a mutual exclusion scheme that uses

a token-based algorithm and is useful in distributed

systems applications. Performance improvement is

demonstrated in comparison to existing mutual exclusion

methods that use a token-based algorithm. The proposed

approach successfully reduced message complexity to √n

in the worst case and as low as 2 in the best case.

 Figure 1: Comparison of complexity of Message of n1/2

in between two case

5. REFERENCES

[1] Mohd Naimi, Michel Trehel, Andre Arnold. A log(n)

distributed mutual exclusion algorithm based on path

reversal. J. Parallel Distrib. Comput., 34(1):1-13, 1996.

[2] Ichiro Suzuki and Tadao Kasami. A distributed mutual

exclusion algorithm. ACM Trans. Comput. Syst.,

3(4):344-349, 1985.

[3] Kerry Raymond. A tree-based algorithm for

distributed mutual exclusion. ACM Trans. Comput. Syst.,

7(1):61-77, 1989.

[4] Mukesh Singhal. A heuristically-aided algorithm for

mutual exclusion in distributed systems. IEEE Trans.

Comput., 38(5):651-662, 1989.

[5] Quazi Ehsanul Kabir Mamun and Hidenori Nakazato.

A new token based protocol for group mutual exclusion in

distributed systems. In ISPDC, pages 34-41, 2006.

[6] Sebastien Cantarell, Ajoy Kumar Datta, Franck Petit,

and Vincent Villain. Token based group mutual exclusion

for asynchronous rings. In ICDCS, pages 691-694, 2001.

[7] Kumar, D., & Ahamad, F. (2023, December). Opinion

extraction from big social data using machine learning

techniques: A survey. In AIP Conference Proceedings

(Vol. 2916, No. 1). AIP Publishing.

[8] Kumar, D., & Ahamad, F. (2024). Opinion Extraction

using Hybrid Learning Algorithm with Feature Set

Optimization Approach. Journal of Electrical Systems,

20(3), 1922-1932.

[9] Kumar, D., & Ahamad, F. (2024). Application of

Machine Learning Algorithm for Optimal Model Design

for Opinion Extraction. Telematique, 23(01), 215-227.

[10] Srivastava, A., & Banoudha, A. Techniques of

Visualization of Web Navigation System.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 24, Issue 1, 2024

All Rights Reserved © 2024 IJRDASE

[11] Sahay, S., Banoudha, A., & Sharma, R. (2013).

Comparative Study of Soft Computing Techniques for

Ground Water Level Forecasting in a Hard Rock

Area. International Journal of Research and Development

in Applied Science and Engineering, 4(1).

