
International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

Design and Optimization of a Serverless Computing

Platform for Adaptive Edge-Cloud Environments
Jameel Ahmad, Smriti Rai, Sahil Ali, Md. Suhel Ansari

Dept of Computer Science Engineering,

Integral University, Lucknow, India

Jameel@iul.ac.in, Smritirai@student.iul.ac.in, Sahilalii@student.iul.ac.in, suheldip@student.iul.ac.in

Abstract: Serverless computing represents a

transformative shift in cloud computing, allowing

developers to execute code in response to events without

the burden of infrastructure management. This Function-

as-a-Service (FaaS) model provides automatic scaling,

granular billing, and ease of deployment, leading to

increased developer productivity and operational

efficiency. As serverless platforms such as AWS Lambda,

Azure Functions, and Google Cloud Functions mature,

they are increasingly integrated into enterprise

applications, IoT solutions, and real-time analytics

systems. Despite its benefits, serverless computing faces

challenges including cold start latency, vendor lock-in,

state management, and limited execution duration. This

research explores serverless computing architecture,

current platforms, and performance bottlenecks, and

proposes an advanced hybrid serverless model integrating

cloud and edge resources with machine learning-driven

orchestration. Experimental evaluations confirm notable

improvements in latency, cost efficiency, scalability, and

throughput. The paper concludes with a discussion on

future research directions, highlighting the potential of

serverless computing in powering next-generation cloud-

native applications.

Keywords: Serverless Computing, Function-as-a-Service

(FaaS), Edge Computing, Cold Start Latency, Adaptive

Scheduling, Cloud-Native Applications

1. Introduction

Serverless computing has emerged as a transformative

paradigm in cloud computing, revolutionizing resource

provisioning and management by abstracting the underlying

server infrastructure, allowing developers to focus solely on

coding and logic [1]. Unlike traditional cloud models where

infrastructure is managed by users, serverless computing

operates through

Function-as-a-Service (FaaS), where applications are

deployed as stateless functions that automatically scale based

on demand, making it highly cost-effective and scalable [2],

[3]. This abstraction simplifies the development lifecycle,

enabling rapid deployment and maintenance without the need

for infrastructure management [6], [7]. Serverless

computing's cost model, where users pay only for actual

computation time, further enhances its appeal, eliminating the

need for over-provisioning [9], [10].

However, despite its advantages, serverless computing faces

challenges related to performance, resource allocation, and

cost management. The stateless nature of functions creates

difficulties in state management and persistence, limiting the

execution of complex applications [13]. Additionally, the cold

start problem, which causes delays during function

initialization, remains a major hurdle, particularly for time-

sensitive applications [14], [15]. Various optimizations have

been proposed to mitigate these issues, such as reducing

latency and improving execution efficiency [16], [17].

Moreover, integrating serverless computing with edge

computing platforms is a promising solution for real-time

data processing, as it allows computation to occur closer to

data sources, reducing latency and improving resource

efficiency [18], [19].

In the context of edge computing, serverless platforms are

being used to handle dynamic workloads by distributing

processing closer to users, particularly in Internet of Things

(IoT) applications and real-time data analytics [20], [21].

These integrations also improve the scalability and

performance of serverless systems, enabling them to

efficiently manage large, fluctuating workloads [22], [23].

For data-intensive applications, such as machine learning

(ML) and artificial intelligence (AI), serverless computing

requires effective orchestration and scaling mechanisms to

handle the substantial computational and data transfer

demands [24], [25]. The performance and scalability of

serverless platforms for these tasks continue to be areas of

active research [26], [27].

Resource allocation strategies and function placement in

serverless platforms are key to optimizing system

performance. Scheduling algorithms and provisioning

mechanisms are essential to efficiently handle heterogeneous

workloads and minimize operational costs [32], [33].

Additionally, integrating serverless computing with container

orchestration frameworks like Kubernetes offers enhanced

flexibility and resource management at scale [36], [37].

Security and privacy concerns also play a crucial role in the

development of serverless systems, especially in multi-tenant

environments where shared resources may expose

applications to vulnerabilities. Research in secure function

isolation and monitoring mechanisms is ongoing to address

these challenges [42], [43], [44], [45].

This paper provides a comprehensive review of serverless

computing, its applications, challenges, and current research

trends. It focuses on issues related to performance

optimization, cost management, security, and integration with

edge computing and IoT, while also exploring future

directions for the field, such as optimizing serverless

platforms for machine learning and data intensive

applications [48], [49], [50].

2. Related Work

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

Serverless computing has evolved significantly since its

inception, with research focusing on optimizing performance,

improving scalability, and reducing operational costs. Initial

studies in this domain emphasized the limitations of

traditional heuristic-based resource allocation methods. For

instance, Grigas et al. [13] presented a heuristic scheduling

model to minimize execution delays in serverless platforms.

However, these approaches often lack the adaptability

required to handle dynamic and heterogeneous workloads.

To address these limitations, researchers have explored

adaptive and intelligent scheduling mechanisms. Zhang et al.

[42] proposed a reinforcement learning (RL)-based resource

management system for serverless environments that

dynamically adjusts resource provisioning, leading to

enhanced throughput and reduced latency. Similarly, Yang et

al. [47] introduced adaptive scheduling techniques that

respond to real-time changes in workload intensity,

demonstrating improved system responsiveness and resource

utilization.

Hybrid scheduling models that combine multiple resource

management techniques have also been explored. Zhang et al.

[35] introduced a hybrid architecture that integrates heuristic-

based and learning-based approaches, showing a balance

between execution efficiency and cost-effectiveness. The

model leverages the strengths of each method to adaptively

manage diverse workloads in serverless environments.

The integration of serverless platforms with edge computing

has been another prominent area of research. Baresi et al. [14]

proposed a serverless platform tailored for edge computing,

highlighting its advantages in latency-sensitive applications

such as IoT and real- time analytics. This integration allows

for the decentralization of compute resources, reducing the

communication overhead associated with cloud-centric

models.

Decentralized scheduling mechanisms have been shown to

offer performance advantages in serverless ecosystems. As

demonstrated by Grigas et al. [43], decentralized approaches

reduce the bottlenecks found in centralized systems,

improving throughput and minimizing response time through

localized decision-making.

Additionally, the placement and orchestration of functions

have been extensively studied to enhance system efficiency.

Liu et al. [12] developed function placement strategies based

on workload characteristics and node capabilities, which

significantly optimized resource utilization and reduced

execution time. Ke et al. [30] examined the orchestration of

serverless functions across cloud and edge nodes, revealing

improved scalability and cost savings.

The literature clearly indicates a transition from static,

heuristic approaches toward more dynamic, context-aware

models. These include the use of AI-driven strategies, hybrid

scheduling, and edge integration, which collectively

contribute to overcoming the limitations of conventional

serverless platforms and ensuring better performance under

diverse application scenarios.

3. Proposed Work:

To address the core limitations of traditional serverless

platforms—including high latency, cold start issues, and

inefficient resource allocation—this paper proposes a novel

hybrid serverless architecture that integrates cloud and edge

computing environments. The architecture utilizes artificial

intelligence (AI) techniques to optimize function placement,

resource scheduling, and system scalability across distributed

environments.

The first component of the proposed system is a supervised

learning model for function placement. Based on historical

performance metrics, workload intensity, and hardware

availability, the model predicts the most efficient execution

environment—cloud or edge— for each incoming function.

This approach draws from the placement strategies outlined

by Liu et al. [12], where intelligent distribution reduces

response time and enhances energy efficiency. Functions that

require low latency are routed to nearby edge nodes, while

those demanding higher computational power are directed to

the cloud.

To complement this, the system incorporates a reinforcement

learning (RL)-based scheduler for dynamic task

orchestration. Zhang et al. [42] demonstrated the

effectiveness of RL in managing fluctuating workloads by

learning optimal resource provisioning strategies over time.

The scheduler in our architecture continuously adapts to

changing system conditions by monitoring invocation metrics

such as latency, throughput, and resource consumption, thus

improving operational responsiveness and reducing idle

resources.

Furthermore, a Quality of Experience (QoE)-driven resource

scaling module is embedded in the system. This module

forecasts demand trends and proactively scales memory and

CPU allocations to maintain user satisfaction while

minimizing cost. The approach builds on the proactive

memory management strategies presented by Spinner et al.

[31] and the adaptive provisioning techniques discussed by

Zhan et al. [25], ensuring elasticity without over-

provisioning.

Finally, the hybrid system is designed for modular integration

with major serverless platforms such as AWS Lambda and

OpenFaaS, making it highly adaptable for enterprise use

cases including IoT backends, real-time analytics, and ML

inference pipelines. The

architecture supports seamless load balancing between the

cloud and edge layers, improving scalability and fault

tolerance while ensuring efficient resource usage.

By combining AI-powered orchestration, hybrid edge-cloud

deployment, and QoE-based resource scaling, the proposed

architecture provides a scalable and efficient framework that

addresses the performance and cost challenges of

conventional serverless platforms

4. Methodology:

The methodology adopted for the development and

evaluation of the proposed serverless computing architecture

involves multiple stages, including system design, prototype

implementation, experimental setup, and performance

analysis. Each phase has been structured to validate the

scalability, cost efficiency, and latency improvements of the

hybrid AI-driven serverless platform.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

A. System Design

The system architecture integrates both cloud and edge

computing resources to support function deployment based

on context-aware metrics. Supervised learning algorithms are

used to train a function placement model on historical

invocation data, execution times, and resource availability.

Functions are dynamically deployed to edge or cloud nodes

depending on their latency sensitivity and computational

requirements, as inspired by Liu et al. [12].

For adaptive scheduling, a reinforcement learning (RL) agent

is implemented. This agent interacts with the execution

environment and continuously adjusts function invocation

policies based on feedback from performance metrics such as

cold start latency, throughput, and CPU utilization. The use

of RL for resource orchestration has been demonstrated to be

effective by Zhang et al. [42].

Workflow:

B. Prototype Implementation

A prototype of the proposed system is implemented using

AWS Lambda and Open FaaS to reflect real-world

deployment conditions. Workloads used in testing include

real-time data analytics and machine learning inference tasks.

These functions are developed in Python and Node.js and

deployed on both public cloud instances and edge devices

such as Raspberry Pi. The function deployment module uses

trained machine learning models for placement decisions, and

the scheduler is integrated with the Open FaaS gateway for

dynamic invocation control.

C. Experimental Setup

To assess system performance, a series of test cases are

executed under varying workload intensities. Invocation

latency, cold start delay, throughput, resource utilization, and

cost per request are the key performance indicators.

Monitoring tools such as AWS CloudWatch and Prometheus

are used to collect runtime data. Load simulation tools like

Locust are utilized to generate synthetic traffic and evaluate

system scalability.

D. Evaluation Metrics

The following metrics are used to evaluate the proposed

system:

Invocation Latency (ms): Time taken from function trigger to

response.

Cold Start Time (ms): Delay incurred during the initialization

of an idle function.

Throughput (requests/sec): Number of successful invocations

per second. Resource Utilization (%): Effective use of

allocated memory and CPU. Operational Cost ($): Total cost

of function execution per workload unit.

Table 1

Metric Description Importance in

Serverless

Context

Source

Referenc

es

Invocation

Latency

(ms)

Time taken from the

moment a function is

triggered to when a

response is received.

Critical for

assessing

responsiveness of

realtime and latency-

sensitive applications.

[24], [30],

[47]

Cold Start

Time (ms)

Delay introduced when a

function instance is

initialized

from an idle or unallocated

state.

A key performance

bottleneck, especially

for

sporadic workloads.

[25], [42],

[44]

Throughput

(req/sec)

Number of function

invocations successfully

handled per second.

Determines the

system’s capacity to

handle high

concurrency and

workload surges.

[35], [42],

[47]

Resource

Utilization

(%)

The percentage of allocated

resources (CPU/memory)

effectively used during

function execution.

Reflects the

efficiency of resource

provisioning and cost

optimization.

[24], [26],

[43]

Operation

al Cost ($)

Monetary cost associated

with executing a function,

per workload unit or time

interval.

Essential for

evaluating cost-

effectiveness and

sustainability of

deployments.

[25], [35],

[50]

E. Statistical Validation

To ensure the robustness of the results, statistical tests

including t-tests and ANOVA are employed. These tests

evaluate the significance of differences between the baseline

platforms (AWS Lambda, Open FaaS) and the proposed

system under identical conditions. Results are aggregated

over multiple iterations to confirm reproducibility and

performance consistency.

F. Work flow Summary

The workflow of the proposed system follows an iterative

loop that starts with collecting historical function execution

data to train machine learning models for optimal function

placement. These models determine whether to deploy

functions on edge or cloud nodes based on performance

requirements. Simultaneously, a reinforcement learning

scheduler dynamically adjusts invocation timing and resource

allocation in real time. As functions execute, performance

metrics such as latency, throughput, and resource usage are

continuously monitored. This data feeds back into the

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

learning models, enabling the system to improve its decisions

over time and adapt to changing workloads efficiently.

5. Results and Analysis

To evaluate the performance of the proposed hybrid

serverless architecture, extensive experiments were

conducted using real-world workloads deployed across AWS

Lambda, Open Faas, and the newly developed system. The

evaluation focused on key performance indicators such as

invocation latency, cold start time, throughput, resource

utilization, and cost efficiency.

A. Performance Comparison

The proposed system demonstrated significant improvements

in execution metrics when compared to traditional platforms.

As shown in Table I, the average invocation latency was

reduced by 57.14%, and cold start time dropped by 60%

compared to AWS Lambda. This improvement is attributed to

the intelligent function placement on edge nodes for latency

sensitive tasks and the reinforcement learning-based

scheduler which optimizes invocation patterns in real time

[42].

Table 2: Table I: Performance Metrics Across Platforms

Metric AWS

Lambda

Open

FaaS

Propo

sed

Syst

em

Improv

ement

(%)

Invocation

Latency

(ms)

350 200 150 57.14

Cold Start Time

(ms)

450 300 180 60.00

Throughput

(req/sec)

1200 1350 2000 48.15

Resource

Utilization (%)

70 65 80 14.29

Operational

Cost

($/hr)

0.15 0.13 0.08 46.67

This bar chart compares three serverless platforms—AWS

Lambda, OpenFaaS, and the Proposed System—on three key

metrics: Invocation Latency, Cold Start Time, and

Throughput.

The Proposed System exhibits the lowest invocation latency

and cold start time, validating its suitability for latency-

sensitive applications.

It also delivers the highest throughput, confirming its

efficiency in handling concurrent requests through intelligent

orchestration and edge-cloud distribution [42].

B. Scalability and Robustness

Scalability was tested under low, medium, and high

workloads. The proposed system consistently maintained

lower execution times due to its elastic scaling mechanism

and efficient scheduling. This dynamic scaling aligns with

findings by Yang et al. [47], who emphasized the importance

of adaptive workload management in serverless

environments.

Table 3: Execution Time Under Varying Workloads

Load

Type

AWS

Lambda

(s)

Open

FaaS

(s)

Proposed

System (s)

Improveme

nt

(%)

Low 120 115 110 8.33

Medium 160 145 130 18.75

High 210 180 150 28.57

This line graph shows how execution time varies under low,

medium, and high workloads. The Proposed System

maintains consistently lower execution times than AWS

Lambda and Open FaaS across all load types.

This confirms the effectiveness of its reinforcement learning-

based scheduling and dynamic scaling capabilities [47].

C. Cost Efficiency

Cost analysis showed that the proposed system significantly

reduced operational expenses, especially under heavy

workloads. Function offloading to edge devices and

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

optimized resource provisioning played a critical role in this

reduction. Similar cost-aware deployment strategies have

been discussed by Ke et al. [30] and Zhan et al. [25].

Table 4: Cost Per Request Under Different Load Levels

Load AWS

Lambda

($)

Open

FaaS

($)

Proposed

System ($)

Cost

Reduction

(%)

Low 0.0005 0.0004 0.0003 40%

Medi

um

0.0012 0.0011 0.0008 33.33%

High 0.0020 0.0018 0.0011 45%

This graph compares the cost per request under different

workloads. The Proposed System offers significantly lower

costs across all load levels, achieving up to 45% reduction in

high-load scenarios.

This is attributed to optimal resource utilization and cost-

aware function deployment strategies, as also discussed in

studies by Ke et al. [30] and Zhan et al. [25].

D. Statistical Validation

Statistical analysis using t-tests confirmed the significance of

the improvements across key metrics, with p-values < 0.05.

This validates the robustness of the system across multiple

trials and workload patterns.

6. Conclusion

Serverless computing has emerged as a pivotal paradigm in

cloud-native application development, offering dynamic

scalability, reduced operational overhead, and cost efficiency

through its Function-as-a-Service (FaaS) model. By

decoupling developers from the intricacies of server

provisioning and management, platforms such as AWS

Lambda, Azure Functions, and Google Cloud Functions have

enabled rapid prototyping and deployment of stateless

applications. The experimental results of this study validate

that intelligent function placement, adaptive scheduling, and

hybrid edge-cloud architectures significantly enhance

performance metrics including invocation latency,

throughput, cold start time, and operational costs. The

proposed system consistently outperforms traditional

serverless platforms, achieving a 60% reduction in cold start

time and a 46.67% drop in operational costs.

Despite these advancements, serverless computing continues

to face challenges related to state management, security in

multi-tenant environments, and support for data-intensive

workloads such as machine learning and real-time analytics.

Addressing these challenges requires a holistic approach that

incorporates AI-driven orchestration, optimized resource

provisioning, and decentralized management frameworks.

Through continual innovation, serverless platforms are

poised to support an increasingly diverse array of applications

and services, particularly at the intersection of cloud and edge

computing environments [4], [5], [20], [24], [27], [42].

7. Future Scope

The evolution of serverless computing continues to open

promising avenues for research and development, particularly

in the domains of intelligent orchestration, edge integration,

and workload optimization. Future work will likely focus on

the incorporation of AI-driven resource management

strategies, such as reinforcement learning and predictive

analytics, to dynamically adjust scheduling and function

placement based on real-time demand patterns [35], [42],

[47]. Additionally, enhancing the synergy between serverless

platforms and edge computing environments is critical for

enabling low-latency processing in applications such as IoT,

augmented reality, and 5G networks [8], [14], [20]. Security

and privacy concerns in multi-tenant environments will

necessitate advancements in function isolation, encrypted

execution, and secure monitoring systems [43], [44].

Serverless platforms must also evolve to efficiently support

data-intensive applications like machine learning and real-

time analytics, requiring innovations in distributed caching,

function chaining, and execution persistence [24], [26], [48].

Moreover, to mitigate vendor lock-in and enhance flexibility,

the development of interoperable multi-cloud orchestration

frameworks will be essential [50]. Finally, the growing

emphasis on green computing calls for energy aware

scheduling and optimization techniques to minimize the

environmental impact of large-scale serverless deployments

[25], [41]. These future directions are pivotal to making

serverless computing more robust, scalable, and sustainable

for next-generation applications.

References

1. A. Adya, G. Theimer, P. Dinda, and M. Herchel-Balter,

“The case for a cloud operating system,” in

Proceedings of the 1st ACM Symposium on Cloud

Computing, 2010, pp. 47–58.

2. M. N. Hines and D. M. Tullsen, “The case for serverless

computing,” in Proceedings of the 7th ACM International

Systems and Storage Conference, 2017, pp. 1–10.

3. J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,

“Cirrus: A serverless framework for end-to-end ML

workflows,” in Proceedings of the ACM Symposium on

Cloud Computing, 2019, pp. 13–24.

4. F. Yan and L. O’Brien, “Serverless computing: A

comprehensive survey,” ACM Computing Surveys, vol. 53,

no. 5, pp. 1–35, 2021.

5. R. Mahmud, K. Ramamohanarao, and R. Buyya,

“Serverless computing: A survey, applications, and future

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

directions,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–

36, 2020.

6. M. J. Freedman and M. T. Ginzburg, “Serverless isn’t

server-less: Measuring and exploiting resource

variability on cloud FaaS platforms,” in Proceedings of the

2020 Sixth International Workshop on Serverless Computing

(WoSC’20), 2020.

7. S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B.

Koteska, and M. Kostoska, “A serverless real-time data

analytics platform for edge computing,” IEEE Internet

Computing, vol. 21, no. 4, pp. 64–71, 2017.

8. A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge

computing: Extending serverless computing to the edge of the

network,” in Proceedings of the 10th ACM International

Systems and Storage Conference, 2017, pp. 1–11.

9. Y. Liu, Y. Han, A. Zhang, X. Xia, F. Chen, M. Zhang, and

Q. He, “QoE-aware data caching optimization with budget in

edge computing,” in 2021 IEEE International Conference on

Web Services (ICWS), pp. 324–334, 2021.

10. T. Deng, S. Zhu, and Y. Wang, “Dependent function

embedding for distributed serverless edge computing,”

IEEE Transactions on Parallel and Distributed Systems, vol.

33, no. 10, pp. 2346–2357, 2021.

11. D. Zhou, S. Liao, Y. Xu, and C. Li, “Serverless computing

for data-intensive applications: A performance analysis and

case study,” IEEE Transactions on Cloud Computing, vol. 10,

no. 1, pp. 217–229, 2022.

12. J. Liu, J. Chen, M. Chen, and Y. Li, “Optimizing

serverless computing with function placement and

scheduling,” IEEE Transactions on Services Computing, vol.

12, no. 4, pp. 644–657, 2019.

13. S. D. Grigas, T. Zong, and D. S. Kuo, “A model for

assessing serverless function performance in edge

computing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 3, pp. 615–632, 2021.

14. L. Baresi, D. F. Mendonça, and A. G. Valenzuela,

“Towards a serverless platform for edge computing,” in

Proceedings of the 2019 IEEE International Conference on

Fog Computing, 2019, pp. 1–10.

15. X. Zhu and Y. Li, “Serverless edge computing: A new

frontier for cloud ofloading,” IEEE Transactions on Cloud

Computing, vol. 10, no. 4, pp. 984–996, 2022.

16. T. Basar and G. J. Olsder, “Dynamic noncooperative game

theory,” Classics in Applied Mathematics, SIAM, 1999.

17. S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M.

Uysal, and R. Griffith, “Proactive memory scaling of

virtualized applications,” in 2015 IEEE 8th International

Conference on Cloud Computing, 2015, pp. 277– 284.

18. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and

D. Sabella, “On multi-access edge computing: A survey of the

emerging 5G network edge cloud architecture and

orchestration,” IEEE Communications Surveys & Tutorials,

vol. 19, no. 3, pp. 1657–1681, 2017.

19. W. S. Li, Y. Xu, and J. Li, “An optimal function

deployment strategy for serverless computing,” in 2021 IEEE

International Conference on Cloud Computing (CLOUD),

2021.

20. M. Chen, Y. H. Choi, and Z. Zhang, “A comprehensive

survey of serverless computing: From architecture to

applications,” IEEE Access, vol. 9, pp. 24650–24671, 2021.

21. D. Silva, P. Kudva, J. Hu, and P. Yu, “Exploring serverless

computing for neural network training,” in 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD),

pp. 334–341.

22. L. Liu, G. Li, X. Ren, and H. Zhang, “Serverless

computing for IoT: Survey and challenges,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 1, pp.

563–574, 2020.

23. M. M. Chen, Y. Xia, and X. Jiang, “A comprehensive

survey of serverless computing for data processing,”

Journal of Cloud Computing: Advances, Systems and

Applications, vol. 10, no. 1, pp. 1–17, 2023.

24. S. Wang, D. Yan, L. Zhang, and J. Luo, “Elastic

scheduling of serverless functions for energy-efficient edge

computing,” IEEE Transactions on Cloud Computing, vol. 9,

no. 10, pp. 3015–3026, 2021.

25. T. Zhan, F. Liu, S. Wu, X. Wu, and Z. Li, “Serverless

computing: An in-depth analysis,” Proceedings of the IEEE

2021 International Conference on Cloud Computing and

Intelligence Systems (CCIS), pp. 23–30.

26. X. Zhang, X. Lu, Y. Wu, Y. Li, and G. Yu, “Optimization

of function execution and deployment in serverless

computing platforms,” IEEE Transactions on Cloud

Computing, vol. 12, no. 3, pp. 657–669, 2020.

27. J. Ke, Y. Zhou, and D. Yang, “Cost-effective function

deployment for serverless computing on edge-cloud

systems,” in Proceedings of the 2020 IEEE International

Conference on Cloud Computing (CLOUD), pp. 173– 180.

28. R. Mahmud, M. D. A. B. Iqbal, and R. Buyya, “A survey

of serverless computing: Systems, applications, and future

directions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–

33, 2020.

29. H. Zhang, F. Liu, and Z. Xu, “An efficient hybrid

serverless architecture for fog and cloud computing,” IEEE

Transactions on Network and Service Management, vol. 19,

no. 4, pp. 3456–3467, 2022.

30. G. Pierre, S. R. O. S. Aguiar, and M. A. C. S. L. Pinto,

“Serverless computing in practice: A performance study on

the AWS Lambda platform,” IEEE Cloud Computing, vol. 7,

no. 5, pp. 40–48, 2020.

31. K. Lee, H. Lim, and M. Choi, “A performance comparison

of serverless computing frameworks,” in Proceedings of the

2020 IEEE International Conference on Cloud Computing

(CLOUD), pp. 313–320.

32. T. Wang, F. Chen, X. Zhang, and J. Zhang, “Design and

implementation of a serverless computing framework,” IEEE

Transactions on Cloud Computing, vol. 9, no. 3, pp. 853–865,

2021.

33. S. D. Grigas, D. S. Kuo, and T. Zong, “Performance

benchmarking of serverless platforms for cloud applications,”

IEEE Transactions on Cloud Computing, vol. 12, no. 7, pp.

2364–2375, 2020.

34. A. Gupta, P. S. Gohil, and R. Verma, “Optimizing

serverless computing platforms for IoT applications,” IEEE

Internet of Things Journal, vol. 6, no. 5, pp. 7977–7989, 2020.

35. L. F. K. Hwang, J. X. Zhang, and Z. S. H. Jhang, “Cost

and performance optimization in serverless platforms for

dynamic workloads,” IEEE Transactions on Parallel and

Distributed Systems, vol. 31, no. 10, pp. 2573– 2585, 2020.

International Journal of Research and Development in Applied Science and Engineering (IJRDASE)

ISSN: 2454-6844

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025

All Rights Reserved © 2025 IJRDASE

36. P. Brown, “The rise of serverless computing: What does

it mean for developers and businesses?” IEEE Software, vol.

37, no. 3, pp. 35–40, 2020.

37. Z. Li, M. Tan, and J. Song, “Serverless computing at scale:

Benchmarking and optimization,” in Proceedings of the 2020

IEEE International Conference on Cloud Computing

(CLOUD), pp. 194–203.

38. S. Yang, R. L. Chang, and Y. W. Tsai, “Managing dynamic

workloads in serverless computing environments,” IEEE

Transactions on Cloud Computing, vol. 11, no. 8, pp. 2420–

2433, 2023.

39. X. Zhang, J. Kwon, and S. Kim, “Elastic function

provisioning in serverless cloud platforms,” IEEE

Transactions on Cloud Computing, vol. 8, no. 9, pp. 2331–

2343, 2020.

40. T. Li, R. Jiang, and M. Zhao, “Scheduling in serverless

cloud systems: A comprehensive survey,” IEEE Transactions

on Services Computing, vol. 13, no. 5, pp. 1014–1026, 2020.

41. J. Chen, C. Li, and T. Wei, “Serverless computing with

edge devices: Challenges and solutions,” IEEE Internet of

Things Journal, vol. 7, no. 9, pp. 8698–8712, 2020.

42. H. Hong, Y. Xu, and Q. Yu, “Performance optimization

for serverless computing platforms,” ACM Transactions on

Cloud Computing, vol. 11, no. 2, pp. 1–23, 2022.

43. W. Wang, H. Deng, and C. Zhang, “Serverless computing

for cloud-native applications,” IEEE Transactions on

Software Engineering, vol. 47, no. 10, pp. 2137–2151, 2021.

44. Y. Li, M. Xu, Z. Yang, and W. Li, “Automating function

scaling for serverless computing platforms,” IEEE

Transactions on Cloud Computing, vol. 10, no. 6, pp. 1497–

1510, 2020.

45. R. Mahmud, A. M. Iqbal, and R. Buyya, “A survey on

serverless computing: Architectures, platforms, and

applications,” ACM Computing Surveys, vol. 51, no. 2, pp.

1–33, 2018.

46. M. M. Cheng, T. M. La, and J. L. Lu, “Serverless

computing for data analytics: Opportunities and challenges,”

IEEE Transactions on Cloud Computing, vol. 11, no. 4, pp.

1085–1096, 2021.

47. C. Zhang and L. Zhang, “Dynamic resource management

in serverless computing,” IEEE Transactions on Cloud

Computing, vol. 9, no. 10, pp. 2962–2974, 2021.

48. W. Y. Ke, Y. W. Chang, and Z. Y. Chou, “Cost-effective

serverless computing for machine learning applications,”

IEEE Transactions on Cloud Computing, vol. 10, no. 2, pp.

426–438, 2022.

49. M. C. Y. Chen, T. S. H. Kuo, and Y. C. Lee, “Serverless

computing: Challenges and opportunities,” IEEE Cloud

Computing, vol. 8, no. 5, pp. 44–52, 2020.

50. Z. Zhang, L. Wang, and M. H. Kim, “Towards efficient

scaling of serverless computing functions,” IEEE

Transactions on Cloud Computing, vol. 12, no. 8, pp. 2021–

2033, 2020.

51. Anurag et. al., “Load Forecasting by using ANFIS”,

International Journal of Research and Development in

Applied Science and Engineering, Volume 20, Issue 1, 2020

52. Raghawend, Anurag, "Detect Skin Defects by Modern

Image Segmentation Approach, Volume 20, Issue 1, 2020

