
International Journal of Research and Development in Applied Science and Engineering (IJRDASE) 

ISSN: 2454-6844 

 

Available online at: www.ijrdase.com Volume 25, Issue 1, 2025 

All Rights Reserved © 2025 IJRDASE 

Design and Optimization of a Serverless Computing 

Platform for Adaptive Edge-Cloud Environments 
Jameel Ahmad, Smriti Rai, Sahil Ali, Md. Suhel Ansari 

Dept of Computer Science Engineering,  

Integral University, Lucknow, India 

Jameel@iul.ac.in, Smritirai@student.iul.ac.in, Sahilalii@student.iul.ac.in, suheldip@student.iul.ac.in 

 

Abstract: Serverless computing represents a 

transformative shift in cloud computing, allowing 

developers to execute code in response to events without 

the burden of infrastructure management. This Function-

as-a-Service (FaaS) model provides automatic scaling, 

granular billing, and ease of deployment, leading to 

increased developer productivity and operational 

efficiency. As serverless platforms such as AWS Lambda, 

Azure Functions, and Google Cloud Functions mature, 

they are increasingly integrated into enterprise 

applications, IoT solutions, and real-time analytics 

systems. Despite its benefits, serverless computing faces 

challenges including cold start latency, vendor lock-in, 

state management, and limited execution duration. This 

research explores serverless computing architecture, 

current platforms, and performance bottlenecks, and 

proposes an advanced hybrid serverless model integrating 

cloud and edge resources with machine learning-driven 

orchestration. Experimental evaluations confirm notable 

improvements in latency, cost efficiency, scalability, and 

throughput. The paper concludes with a discussion on 

future research directions, highlighting the potential of 

serverless computing in powering next-generation cloud-

native applications. 
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1. Introduction 

Serverless computing has emerged as a transformative 

paradigm in cloud computing, revolutionizing resource 

provisioning and management by abstracting the underlying 

server infrastructure, allowing developers to focus solely on 

coding and logic [1]. Unlike traditional cloud models where 

infrastructure is managed by users, serverless computing 

operates through 

  

Function-as-a-Service (FaaS), where applications are 

deployed as stateless functions that automatically scale based 

on demand, making it highly cost-effective and scalable [2], 

[3]. This abstraction simplifies the development lifecycle, 

enabling rapid deployment and maintenance without the need 

for infrastructure management [6], [7]. Serverless 

computing's cost model, where users pay only for actual 

computation time, further enhances its appeal, eliminating the 

need for over-provisioning [9], [10]. 

However, despite its advantages, serverless computing faces 

challenges related to performance, resource allocation, and 

cost management. The stateless nature of functions creates 

difficulties in state management and persistence, limiting the 

execution of complex applications [13]. Additionally, the cold 

start problem, which causes delays during function 

initialization, remains a major hurdle, particularly for time-

sensitive applications [14], [15]. Various optimizations have 

been proposed to mitigate these issues, such as reducing 

latency and improving execution efficiency [16], [17]. 

Moreover, integrating serverless computing with edge 

computing platforms is a promising solution for real-time 

data processing, as it allows computation to occur closer to 

data sources, reducing latency and improving resource 

efficiency [18], [19]. 

In the context of edge computing, serverless platforms are 

being used to handle dynamic workloads by distributing 

processing closer to users, particularly in Internet of Things 

(IoT) applications and real-time data analytics [20], [21]. 

These integrations also improve the scalability and 

performance of serverless systems, enabling them to 

efficiently manage large, fluctuating workloads [22], [23]. 

For data-intensive applications, such as machine learning 

(ML) and artificial intelligence (AI), serverless computing 

requires effective orchestration and scaling mechanisms to 

handle the substantial computational and data transfer 

demands [24], [25]. The performance and scalability of 

serverless platforms for these tasks continue to be areas of 

active research [26], [27]. 

Resource allocation strategies and function placement in 

serverless platforms are key to optimizing system 

performance. Scheduling algorithms and provisioning 

mechanisms are essential to efficiently handle heterogeneous 

workloads and minimize operational costs [32], [33]. 

Additionally, integrating serverless computing with container 

orchestration frameworks like Kubernetes offers enhanced 

flexibility and resource management at scale [36], [37]. 

Security and privacy concerns also play a crucial role in the 

development of serverless systems, especially in multi-tenant 

environments where shared resources may expose 

applications to vulnerabilities. Research in secure function 

isolation and monitoring mechanisms is ongoing to address 

these challenges [42], [43], [44], [45]. 

This paper provides a comprehensive review of serverless 

computing, its applications, challenges, and current research 

trends. It focuses on issues related to performance 

optimization, cost management, security, and integration with 

edge computing and IoT, while also exploring future 

directions for the field, such as optimizing serverless 

platforms for machine learning and data intensive 

applications [48], [49], [50]. 

 

2. Related Work 
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Serverless computing has evolved significantly since its 

inception, with research focusing on optimizing performance, 

improving scalability, and reducing operational costs. Initial 

studies in this domain emphasized the limitations of 

traditional heuristic-based resource allocation methods. For 

instance, Grigas et al. [13] presented a heuristic scheduling 

model to minimize execution delays in serverless platforms. 

However, these approaches often lack the adaptability 

required to handle dynamic and heterogeneous workloads. 

To address these limitations, researchers have explored 

adaptive and intelligent scheduling mechanisms. Zhang et al. 

[42] proposed a reinforcement learning (RL)-based resource 

management system for serverless environments that 

dynamically adjusts resource provisioning, leading to 

enhanced throughput and reduced latency. Similarly, Yang et 

al. [47] introduced adaptive scheduling techniques that 

respond to real-time changes in workload intensity, 

demonstrating improved system responsiveness and resource 

utilization. 

Hybrid scheduling models that combine multiple resource 

management techniques have also been explored. Zhang et al. 

[35] introduced a hybrid architecture that integrates heuristic-

based and learning-based approaches, showing a balance 

between execution efficiency and cost-effectiveness. The 

model leverages the strengths of each method to adaptively 

manage diverse workloads in serverless environments. 

The integration of serverless platforms with edge computing 

has been another prominent area of research. Baresi et al. [14] 

proposed a serverless platform tailored for edge computing, 

highlighting its advantages in latency-sensitive applications 

such as IoT and real- time analytics. This integration allows 

for the decentralization of compute resources, reducing the 

communication overhead associated with cloud-centric 

models. 

Decentralized scheduling mechanisms have been shown to 

offer performance advantages in serverless ecosystems. As 

demonstrated by Grigas et al. [43], decentralized approaches 

reduce the bottlenecks found in centralized systems, 

improving throughput and minimizing response time through 

localized decision-making. 

Additionally, the placement and orchestration of functions 

have been extensively studied to enhance system efficiency. 

Liu et al. [12] developed function placement strategies based 

on workload characteristics and node capabilities, which 

significantly optimized resource utilization and reduced 

execution time. Ke et al. [30] examined the orchestration of 

serverless functions across cloud and edge nodes, revealing 

improved scalability and cost savings. 

  

The literature clearly indicates a transition from static, 

heuristic approaches toward more dynamic, context-aware 

models. These include the use of AI-driven strategies, hybrid 

scheduling, and edge integration, which collectively 

contribute to overcoming the limitations of conventional 

serverless platforms and ensuring better performance under 

diverse application scenarios. 

 

3. Proposed Work: 

To address the core limitations of traditional serverless 

platforms—including high latency, cold start issues, and 

inefficient resource allocation—this paper proposes a novel 

hybrid serverless architecture that integrates cloud and edge 

computing environments. The architecture utilizes artificial 

intelligence (AI) techniques to optimize function placement, 

resource scheduling, and system scalability across distributed 

environments. 

The first component of the proposed system is a supervised 

learning model for function placement. Based on historical 

performance metrics, workload intensity, and hardware 

availability, the model predicts the most efficient execution 

environment—cloud or edge— for each incoming function. 

This approach draws from the placement strategies outlined 

by Liu et al. [12], where intelligent distribution reduces 

response time and enhances energy efficiency. Functions that 

require low latency are routed to nearby edge nodes, while 

those demanding higher computational power are directed to 

the cloud. 

To complement this, the system incorporates a reinforcement 

learning (RL)-based scheduler for dynamic task 

orchestration. Zhang et al. [42] demonstrated the 

effectiveness of RL in managing fluctuating workloads by 

learning optimal resource provisioning strategies over time. 

The scheduler in our architecture continuously adapts to 

changing system conditions by monitoring invocation metrics 

such as latency, throughput, and resource consumption, thus 

improving operational responsiveness and reducing idle 

resources. 

Furthermore, a Quality of Experience (QoE)-driven resource 

scaling module is embedded in the system. This module 

forecasts demand trends and proactively scales memory and 

CPU allocations to maintain user satisfaction while 

minimizing cost. The approach builds on the proactive 

memory management strategies presented by Spinner et al. 

[31] and the adaptive provisioning techniques discussed by 

Zhan et al. [25], ensuring elasticity without over-

provisioning. 

Finally, the hybrid system is designed for modular integration 

with major serverless platforms such as AWS Lambda and 

OpenFaaS, making it highly adaptable for enterprise use 

cases including IoT backends, real-time analytics, and ML 

inference pipelines. The 

  

architecture supports seamless load balancing between the 

cloud and edge layers, improving scalability and fault 

tolerance while ensuring efficient resource usage. 

By combining AI-powered orchestration, hybrid edge-cloud 

deployment, and QoE-based resource scaling, the proposed 

architecture provides a scalable and efficient framework that 

addresses the performance and cost challenges of 

conventional serverless platforms 

 

4. Methodology: 

The methodology adopted for the development and 

evaluation of the proposed serverless computing architecture 

involves multiple stages, including system design, prototype 

implementation, experimental setup, and performance 

analysis. Each phase has been structured to validate the 

scalability, cost efficiency, and latency improvements of the 

hybrid AI-driven serverless platform. 
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A. System Design 

The system architecture integrates both cloud and edge 

computing resources to support function deployment based 

on context-aware metrics. Supervised learning algorithms are 

used to train a function placement model on historical 

invocation data, execution times, and resource availability. 

Functions are dynamically deployed to edge or cloud nodes 

depending on their latency sensitivity and computational 

requirements, as inspired by Liu et al. [12]. 

For adaptive scheduling, a reinforcement learning (RL) agent 

is implemented. This agent interacts with the execution 

environment and continuously adjusts function invocation 

policies based on feedback from performance metrics such as 

cold start latency, throughput, and CPU utilization. The use 

of RL for resource orchestration has been demonstrated to be 

effective by Zhang et al. [42]. 

 

Workflow: 

 

 
 

B. Prototype Implementation 

A prototype of the proposed system is implemented using 

AWS Lambda and Open FaaS to reflect real-world 

deployment conditions. Workloads used in testing include 

real-time data analytics and machine learning inference tasks. 

These functions are developed in Python and Node.js and 

deployed on both public cloud instances and edge devices 

such as Raspberry Pi. The function deployment module uses 

trained machine learning models for placement decisions, and 

the scheduler is integrated with the Open FaaS gateway for 

dynamic invocation control. 

 

C. Experimental Setup 

To assess system performance, a series of test cases are 

executed under varying workload intensities. Invocation 

latency, cold start delay, throughput, resource utilization, and 

cost per request are the key performance indicators. 

Monitoring tools such as AWS CloudWatch and Prometheus 

are used to collect runtime data. Load simulation tools like 

Locust are utilized to generate synthetic traffic and evaluate 

system scalability. 

  

D. Evaluation Metrics 

The following metrics are used to evaluate the proposed 

system: 

Invocation Latency (ms): Time taken from function trigger to 

response. 

Cold Start Time (ms): Delay incurred during the initialization 

of an idle function. 

Throughput (requests/sec): Number of successful invocations 

per second. Resource Utilization (%): Effective use of 

allocated memory and CPU. Operational Cost ($): Total cost 

of function execution per workload unit. 

 

Table 1 

Metric Description Importance in 

Serverless 

Context 

Source 

Referenc 

es 

Invocation 

Latency 

(ms) 

Time taken from the 

moment a function is 

triggered to when a 

response is received. 

Critical for 

assessing 

responsiveness of 

realtime and latency-

sensitive applications. 

[24], [30], 

[47] 

Cold Start 

Time (ms) 

Delay introduced when a 

function instance is 

initialized 

from an idle or unallocated 

state. 

A key performance 

bottleneck, especially 

for 

sporadic workloads. 

[25], [42], 

[44] 

Throughput 

(req/sec) 

Number of function 

invocations successfully 

handled per second. 

Determines the 

system’s capacity to 

handle high 

concurrency and 

workload surges. 

[35], [42], 

[47] 

    

Resource 

Utilization 

(%) 

The percentage of allocated 

resources (CPU/memory) 

effectively used during 

function execution. 

Reflects the 

efficiency of resource 

provisioning and cost 

optimization. 

[24], [26], 

[43] 

Operation

al Cost ($) 

Monetary cost associated 

with executing a function, 

per workload unit or time 

interval. 

Essential for 

evaluating cost-

effectiveness and 

sustainability of 

deployments. 

[25], [35], 

[50] 

 

E. Statistical Validation 

To ensure the robustness of the results, statistical tests 

including t-tests and ANOVA are employed. These tests 

evaluate the significance of differences between the baseline 

platforms (AWS Lambda, Open FaaS) and the proposed 

system under identical conditions. Results are aggregated 

over multiple iterations to confirm reproducibility and 

performance consistency. 

  

F. Work flow Summary 

The workflow of the proposed system follows an iterative 

loop that starts with collecting historical function execution 

data to train machine learning models for optimal function 

placement. These models determine whether to deploy 

functions on edge or cloud nodes based on performance 

requirements. Simultaneously, a reinforcement learning 

scheduler dynamically adjusts invocation timing and resource 

allocation in real time. As functions execute, performance 

metrics such as latency, throughput, and resource usage are 

continuously monitored. This data feeds back into the 
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learning models, enabling the system to improve its decisions 

over time and adapt to changing workloads efficiently. 

 

5. Results and Analysis 

To evaluate the performance of the proposed hybrid 

serverless architecture, extensive experiments were 

conducted using real-world workloads deployed across AWS 

Lambda, Open Faas, and the newly developed system. The 

evaluation focused on key performance indicators such as 

invocation latency, cold start time, throughput, resource 

utilization, and cost efficiency. 

 

A. Performance Comparison 

The proposed system demonstrated significant improvements 

in execution metrics when compared to traditional platforms. 

As shown in Table I, the average invocation latency was 

reduced by 57.14%, and cold start time dropped by 60% 

compared to AWS Lambda. This improvement is attributed to 

the intelligent function placement on edge nodes for latency 

sensitive tasks and the reinforcement learning-based 

scheduler which optimizes invocation patterns in real time 

[42]. 

 

Table 2: Table I: Performance Metrics Across Platforms 

Metric AWS 

Lambda 

Open 

FaaS 

Propo

sed 

Syst

em 

Improv

ement 

(%) 

Invocation 

Latency 

(ms) 

350 200 150 57.14 

Cold Start Time 

(ms) 

450 300 180 60.00 

Throughput 

(req/sec) 

1200 1350 2000 48.15 

Resource 

Utilization (%) 

70 65 80 14.29 

Operational 

Cost 

($/hr) 

0.15 0.13 0.08 46.67 

 

 
 

 

This bar chart compares three serverless platforms—AWS 

Lambda, OpenFaaS, and the Proposed System—on three key 

metrics: Invocation Latency, Cold Start Time, and 

Throughput. 

The Proposed System exhibits the lowest invocation latency 

and cold start time, validating its suitability for latency-

sensitive applications. 

It also delivers the highest throughput, confirming its 

efficiency in handling concurrent requests through intelligent 

orchestration and edge-cloud distribution [42]. 

 

B. Scalability and Robustness 

Scalability was tested under low, medium, and high 

workloads. The proposed system consistently maintained 

lower execution times due to its elastic scaling mechanism 

and efficient scheduling. This dynamic scaling aligns with 

findings by Yang et al. [47], who emphasized the importance 

of adaptive workload management in serverless 

environments. 

 

Table 3: Execution Time Under Varying Workloads 

Load 

Type 

AWS 

Lambda 

(s) 

Open 

FaaS 

(s) 

Proposed 

System (s) 

Improveme

nt 

(%) 

Low 120 115 110 8.33 

Medium 160 145 130 18.75 

High 210 180 150 28.57 

 

 

 
 

This line graph shows how execution time varies under low, 

medium, and high workloads. The Proposed System 

maintains consistently lower execution times than AWS 

Lambda and Open FaaS across all load types. 

This confirms the effectiveness of its reinforcement learning-

based scheduling and dynamic scaling capabilities [47]. 

 

C. Cost Efficiency 

Cost analysis showed that the proposed system significantly 

reduced operational expenses, especially under heavy 

workloads. Function offloading to edge devices and 
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optimized resource provisioning played a critical role in this 

reduction. Similar cost-aware deployment strategies have 

been discussed by Ke et al. [30] and Zhan et al. [25]. 

 

Table 4: Cost Per Request Under Different Load Levels 

Load AWS 

Lambda 

($) 

Open 

FaaS 

($) 

Proposed 

System ($) 

Cost 

Reduction 

(%) 

Low 0.0005 0.0004 0.0003 40% 

Medi 

um 

0.0012 0.0011 0.0008 33.33% 

High 0.0020 0.0018 0.0011 45% 

 

 

 
 

This graph compares the cost per request under different 

workloads. The Proposed System offers significantly lower 

costs across all load levels, achieving up to 45% reduction in 

high-load scenarios. 

This is attributed to optimal resource utilization and cost-

aware function deployment strategies, as also discussed in 

studies by Ke et al. [30] and Zhan et al. [25]. 

 

D. Statistical Validation 

Statistical analysis using t-tests confirmed the significance of 

the improvements across key metrics, with p-values < 0.05. 

This validates the robustness of the system across multiple 

trials and workload patterns. 

 

6. Conclusion 

Serverless computing has emerged as a pivotal paradigm in 

cloud-native application development, offering dynamic 

scalability, reduced operational overhead, and cost efficiency 

through its Function-as-a-Service (FaaS) model. By 

decoupling developers from the intricacies of server 

provisioning and management, platforms such as AWS 

Lambda, Azure Functions, and Google Cloud Functions have 

enabled rapid prototyping and deployment of stateless 

applications. The experimental results of this study validate 

that intelligent function placement, adaptive scheduling, and 

hybrid edge-cloud architectures significantly enhance 

performance metrics including invocation latency, 

throughput, cold start time, and operational costs. The 

proposed system consistently outperforms traditional 

serverless platforms, achieving a 60% reduction in cold start 

time and a 46.67% drop in operational costs. 

Despite these advancements, serverless computing continues 

to face challenges related to state management, security in 

multi-tenant environments, and support for data-intensive 

workloads such as machine learning and real-time analytics. 

Addressing these challenges requires a holistic approach that 

incorporates AI-driven orchestration, optimized resource 

provisioning, and decentralized management frameworks. 

Through continual innovation, serverless platforms are 

poised to support an increasingly diverse array of applications 

and services, particularly at the intersection of cloud and edge 

computing environments [4], [5], [20], [24], [27], [42]. 

 

7. Future Scope 

The evolution of serverless computing continues to open 

promising avenues for research and development, particularly 

in the domains of intelligent orchestration, edge integration, 

and workload optimization. Future work will likely focus on 

the incorporation of AI-driven resource management 

strategies, such as reinforcement learning and predictive 

analytics, to dynamically adjust scheduling and function 

placement based on real-time demand patterns [35], [42], 

[47]. Additionally, enhancing the synergy between serverless 

platforms and edge computing environments is critical for 

enabling low-latency processing in applications such as IoT, 

augmented reality, and 5G networks [8], [14], [20]. Security 

and privacy concerns in multi-tenant environments will 

necessitate advancements in function isolation, encrypted 

execution, and secure monitoring systems [43], [44]. 

Serverless platforms must also evolve to efficiently support 

data-intensive applications like machine learning and real-

time analytics, requiring innovations in distributed caching, 

function chaining, and execution persistence [24], [26], [48]. 

Moreover, to mitigate vendor lock-in and enhance flexibility, 

the development of interoperable multi-cloud orchestration 

frameworks will be essential [50]. Finally, the growing 

emphasis on green computing calls for energy aware 

scheduling and optimization techniques to minimize the 

environmental impact of large-scale serverless deployments 

[25], [41]. These future directions are pivotal to making 

serverless computing more robust, scalable, and sustainable 

for next-generation applications. 
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